普通视图

发现新文章,点击刷新页面。
昨天以前首页

实测有沉思能力的智谱 AutoGLM ,我们离会思考的 agent 又近了一步

作者 杜晨
2025年3月31日 13:00

如果有一个会思考但是不会做事的 AI

还有会做事但是不会思考的 AI。

 

你会选哪个?

如果让我来选,我会说:why not both?

今天在中关村论坛智谱 Open Day 上,智谱发布了 AutoGLM 沉思——首个带有沉思能力的桌面端 agent。

这是第一个存在于电脑桌面的,能先思考在做事,且做的过程中不断思考的 agent。

抛给它一个问题,它会逐步分解问题,然后在你面前(或者你不看着它也行)打开一个又一个浏览器标签页,自己上去搜索、查找、记录、汇总、分析信息,最终为你生成一份经过充分查证和深度思考的结果报告。

如果你还不知道这是个什么东西,简单前情提要一下:

AutoGLM 是智谱推出的 Agent 产品,能够实现对手机屏幕和电脑浏览器的操作。重点在于实现方式是前台的图形界面 (GUI),而不是后台的应用接口 (API)。你可以理解为 AutoGLM 学习人类通过「手眼并用」的方式,直接在用户界面上进行操作。这和市面上绝大多数基于 API 的 agent 产品有着明显的交互方式区别。

而沉思能力,正如字面意思,让 AI 可以一边想、一边搜,自主解决开放式的、训练语料不包含的问题,模仿深度思考和展现深度研究的能力。智谱在今年 3 月初拿到新一轮融资的时候就对外预告正在研发沉思,而这个功能的开关也已经在该公司开发的「智谱清言」(ChatGLM) 大模型产品里上线了。

而在 AutoGLM 沉思的身上,智谱独特的 GUI agent 功能,和人们最追捧和爱用的沉思能力,终于实现了融合。

AutoGLM 沉思背后的模型基座,也在本次 Open Day 上正式发布:

GLM-4-Air-0414 基座模型,具有 320 亿参数量,但性能足以对标 DeepSeek-V3、R1 (670B)、Qwen 2.5-Max 等更大参数量的模型。

因为参数量更少,GLM-4-Air0414 可以快速执行 agent 类工作,为 agent 的能力提升以及大规模落地应用提供基础,也一定程度上确保了终端用户的试用体验。

智谱还发布了 GLM-Z1-Air 推理模型,相比 DeepSeek-R1(激活 37B)推理速度提升了 8 倍,而成本降低到只有后者的三十分之一。

这也是一个可以在消费级显卡上运行的推理模型,能够显著提高开发者的使用体验。

智谱还基于 GLM-Z1 模型,使用自进化强化学习方式,训练了一个新的沉思模型 GLM-Z1-Rumination,能够实时联网搜索、动态调用工具,深度分析和自我验证。这个沉思模型能够自主理解用户需求,在复杂任务中不断优化推理、反复验证与修正假设,使研究成果更具可靠性与实用性。

也就是说:AutoGLM 沉思的基础模型架构是这样的:

中层推理和沉思模型 GLM-Z1-Air、GLM-Z1-Rumination

+

底层语言模型 GLM-4-Air-0414

加上工程/产品层的 AutoGLM 工具,就形成了 AutoGLM 沉思的整个技术栈。

智谱也计划在 4 月 14 日正式开源 AutoGLM 沉思背后的所有模型。

此前智谱曾分享过团队对于 AGI 路线图的判断:如果用自动驾驶层级打比方的话,目前大模型产品大体上获得了自我学习的能力,接近于 L3;而沉思、反思、自我批评等能力则是 L4 阶段。

需要注意的是,目前 AutoGLM 沉思还处于 beta 测试阶段。上个周末,APPSO 深度使用了这个产品。从测试结果来看,它在处理复杂工作上的效果确有提高的空间,底层逻辑也需要优化,但作为一个非常新颖的大模型-agent 产品,总体效果已经令人惊艳。

智谱已经踏入了大模型 agent 的 L4 阶段,虽然只是进来了半只脚。

目前 AutoGLM 的沉思功能,目前已经正式上线智谱清言网页端、PC 端和手机 App,免费、不限量地开放。

附上体验🔗

https://autoglm-research.zhipuai.cn/?channel=chatglm#get_started

 

当 Agent 有了沉思能力,AI 终于学会自己干活了?

去年 Anthropic 发布了「Computer Use」,同时展现了足够的模型能力以及较强的设备交互能力,让 agent(智能体)的设想终于首次得到实践。今年 1 月,Anthropic 在美国的最大对手 OpenAI 也通过新产品 Operator,做出对于 GUI agent 理念的演绎。

也是在去年 10 月,智谱和 Anthropic 几乎同时发布了各自在 agent 方向上的最新尝试。智谱的 AutoGLM 是第一家国内机构推出的基于 GUI 的 agent。

而今天的 AutoGLM 沉思,不仅将 agent 的执行任务能力带到了桌面端,更是把工具操作能力、深度研究能力、推理能力和大预言能力进行了首次融合。

这种多重能力驱动的 agent,非常适合信息检索、提炼、汇总型任务。

这就好比是让 agent「开车」,过去你得给他一辆车,教他方向盘、油门刹车、档位怎么用,甚至告诉它开车和倒车的时候分别要往哪看——而现在,agent 已经可以「自动驾驶」了。

让它制作一份「不同于网上所有主流路线的日本两周小众经典行攻略,要求绝对不去最火的目的地,要小众景点,但也要评价比较好的。」

AutoGLM 沉思比较准确地拆解了需求,思考逻辑也比较清楚:它首先去搜了最简单的关键词「日本旅游」,了解主流路线和景点,然后又去搜索了「日本小众旅游景点」之类的关键词——通过这几个步骤,它在本次对话的记忆内部构建了一个知识库,也即什么是主流的,什么是小众的。

这个任务总共做了 20 多次思考。有时候几次思考之间会有重复,比如搜索的是相同的关键词,访问了相同或者相似的链接等。这有可能是因为单次搜索到的信息不足够,毕竟沉思/深度搜索的本质其实也是不断地自我怀疑和推翻,直到达到足够置信度时候才进入下一步。

APPSO 还注意到它会过度依赖特定的网站作为信息来源,打开的所有 tab 里有 90% 都是小红书和知乎(各一半左右)。反而真正的旅行专业资料库,比如马蜂窝、穷游,或者哪怕是 OTA 平台,它一次没用过。

如果要做一份真正的小众攻略,重度依赖小红书的结果可能并不理想。毕竟能上小红书的热门笔记,这个景点应该并不真的小众。一个真正的小众景点旅行者,恐怕不想去 momo 们已经去过或者都想去的地方……

APPSO 注意到,AutoGLM 沉思在沉思过后自己提出了「路线规划合理,不要有无意义的反折」、「行程节奏合理,别太特种兵」之类的要求。

只是实际结果没有完美体现它自己提出的这些要求:比如头几天在濑户内海来回折返,有时候一天内去两三个相隔一小时以上的地点,略微特种兵;第二周从青森向南到仙台,然后又从仙台飞机向北大跨度飞到了北海道,并且北海道只留了两天。考虑到日本大跨度旅行基本都靠 JR,票价昂贵,合理的路线应该是顺着一个方向不回头,除非不得不去大城市换车,一般不应该折返。

但总体来讲,这份攻略是有效的:它呈现了一些提问者未曾考虑过的目的地,也试图在一次行程里去到季节、气候、风格完全不一样的地方(而不是围在大东京、富士山、京坂奈区域来回打转)。

从这个角度,它遵循了提示的要求,并且展现出了深度思考的结果。

就像你不应该直接把 AI 生成的结果直接拿去用一样,这份攻略提供了一个还算不错的基础,让旅行者可以自行优化具体的目的地、路线和中间的交通方式。旅行不只是上车睡觉下车拍照,还应该兼顾人文和自然,深入当地文化传统,探索自然景观,以及至少感受一把在地最有特色的体验项目。

只要你的期待不是即问即用,AutoGLM 沉思给出的答案是足够令人满意的。

点击查看智谱清言的回答 https://chatglm.cn/share/FQoLp

考虑到 AutoGLM 沉思与其它深度思考型大模型最大的特别之处在于浏览器的操控能力,APPSO 也更深入和严苛地测试了一下他的 browser use 能力。

让它做一份关于科创板云计算公司的研报,看看结果怎么样。

正如前一次做旅行攻略一样,AutoGLM 沉思的「思考过程」是没有任何问题的。从下图中可以看到,它:

  1. 准确拆解了筛选条件,
  2. 明确需要多轮搜索和迭代,
  3. 制定了分步骤的计划,
  4. 通过「一般搜索」找到了大概的搜索目标
  5. 开始执行分步操作

但是 browser use 的过程实在让人有点抓头:AutoGLM 工具一次又一次地试图打开证监会指定的信息披露网站(巨潮资讯),解析网页的信息。它顺利地找到了网站数据库的条件筛选工具,但经常无法正常筛选,要么选不好时间区间,要么找不到对应板块的下拉菜单在哪。

APPSO 观察到,AutoGLM 沉思给每一步骤的定时通常是 3 分 20 秒左右,但如果访问网站不顺利,就会因为操作超时而导致「本轮思考」失败。

另外,根据 APPSO 之前体验去年的 AutoGLM 以及其它 GUI agent 产品的经验,当需要用户进行登录操作、输入付款信息、点击发送按钮这种敏感性操作时,agent 可以停下来等待用户操作。而在使用 AutoGLM 沉思的过程中,它的确可以等候用户登陆,但遇到「用不明白网站」的情况,并没有呼唤用户接管,而是只会傻傻地等着。

在本次任务中,连续两轮思考失败之后,AutoGLM 沉思开始进入一个重新思考-跟之前导致失败的思考结果一样-再重新思考的循环过程,一直循环往复了五六次,最后败下阵来,把目标转向了知乎。

步骤进行到这里的时候,其实已经算任务失败了,因为输入的原始指令是查找和汇总上市公司资料和公告,数据的专业准确性很重要,而知乎并不是一个可靠的上市公司信息披露平台。

经过了好几次艰难的测试,最后终于吐出了结果:华为、紫光、UCloud 三家公司,虽然都跟边缘计算有关,但三家的股票代码都写错了,更别提有两家并没上科创板。

Agent 「自动驾驶」能力,和路况、驾驶位有很大关系

在其它更轻松的任务(比如做旅行规划、游戏攻略、查找简单信息等)当中,AutoGLM 工具的 browser use 能力是没有太大问题的。

但 APPSO 发现,一旦当前网站的视觉设计相对复杂,或者设计的有一些陷阱,AutoGLM 工具就很容易被「使绊子」。

一个最直接的例子就是电商网站。APPSO 给出明确提示,「去淘宝或京东购买一件重磅日系 T 恤」,AutoGLM 沉思制定了宏伟的计划和明确的分工——然而却连淘宝首页的山门都进不去,甚至找不到搜索框在哪里。而且它似乎被「找不到搜索框」这件事完全阻挡住了,甚至也没有去看网页的其它位置——如果它看了的话,肯定会发现相关商品早就出现在首页推荐里了。

对于这个测试中发现的意外情况,智谱 CEO 张鹏表示,「点背不能赖社会」,AutoGLM 沉思目前仍在 beta 阶段,还有很大的进化空间,而且目前的升级速度也很快(APPSO 在正式发布版上测试淘宝的使用效果,已经没那么磕绊了)。

张鹏指出,在模型作为服务或作为产品 (MaaS) 的理念下,模型产品自己的能力要像木桶一样,高且全面。或许现在 AutoGLM 工具的视觉能力还不如人,处理意外情况的能力还不够,归根结底可能是泛化能力还不够,但这些能力的提升并不是模型问题,而是纯粹的工程层面——不需要担心。

从模型底座层面,AutoGLM 沉思也有提升的空间。

经常用大语言模型产品的朋友都知道,提示写的越具体,规则和边界设定的越明确,它的效果越好,越有希望生成符合用户提示的结果。基于大语言模型的 agent 也是一样。

但是提示不能无限扩展,就好比你招了一个秘书帮你干活,但你不应该总是每次都把「找谁」、「什么地点」、「什么时候」、「去哪」等一切的信息都讲清楚,ta 才能勉强顺利地帮你搞定一个饭局的准备工作。

大语言模型很强大,但也有它糟糕的地方:只受到文本规则的约束,缺乏真正的实际问题的规划能力,任务过程中容易被卡住;缺乏足够长的上下文记忆空间,任务持续时间太长就持续不下去;上一个步骤的错误会随着步骤逐渐放大,直至失败。

AutoGLM 沉思也是一个基于大语言模型的 agent,即便在 agent 能力上做了很多工作,但仍然难免受到大语言模型的诅咒。思考能力越强,越容易想多、想歪。

从 APPSO 的试用过程中可以看到,除了一些绝对基础的概念(比如「旅游」、「T 恤」、「公司」)之外,它并没有稍微复杂的上层知识。用户每次发出任何指令,它都要先自己打开浏览器,上网学习一遍,明确用户的所指,在本次对话的有限记忆空间内建立一个知识库,然后再去进行后续的步骤。

而就它目前最擅长和依赖的那几个信息来源来看,一旦用户任务的复杂性、专业性「上了强度」,想要它在用户可接受的时间(目前官方定的是每任务总共 15 分钟左右)内,查到真实、准确和有价值的信息,就真的有点勉强了,更别提给到用户有效的结果(APPSO 的测试中有一半无法输出完整的结果)。

不过这并不是个太大的问题。

有这样一个很实际的观点,可以套用到 AutoGLM 沉思上:

今天的 agent 水平,将它视为「主驾驶」可能能力尚有不足。但它仍然是一个很好的副驾驶 (copilot)。

在 AutoGLM 沉思上,我们看到了足够的思考能力,也看到了优秀(但确实受制于客观因素)的 browser use 能力。很显然,智谱作为中国目前非巨头公司当中,少数模型能力最强的选手之一,肯定会在这两个能力上面继续进步,而且会很快。

自从 APPSO 拿到测试资格,到 AutoGLM 沉思正式发布,中间已经更新了数个版本,在模型基座和浏览器操控能力上面都有了改进。

但如果我们想要的是一个真正会思考且能办事的 agent,我们恐怕需要比现有范式的大语言模型更强大的智能体基座。

而智谱推出的「语言+推理+沉思+行动」的 Agent 框架,尽管产品层面仍然笨拙,但看起来是一个非常明确可行的方向。

诚然,国产大模型和基于大模型的 agent 产品,现阶段的目标如果放在「追赶硅谷对手」上可能反而更实际一点。AutoGLM 沉思从操作逻辑和实现目的上,都是明显区别于目前国内所有同类和近似产品的「新物种」,和 Anthropic、OpenAI 也正在拉近距离。

对于这样一家非巨头、脱胎于中国顶级学府的大模型创新领导者来说,大多数的不足都可以被容忍,而看到它在做的事情的独创性和领导性,才更重要。

#欢迎关注爱范儿官方微信公众号:爱范儿(微信号:ifanr),更多精彩内容第一时间为您奉上。

爱范儿 | 原文链接 · 查看评论 · 新浪微博


体验完豆包新版深度思考,我发现 AI 终于学会像人类一样「边想边搜」

作者 莫崇宇
2025年3月27日 22:01

你有没有发现,现在的 AI 搜索真的很懂摸鱼?

当 ChatGPT、Perplexity 等工具相继问世,都说 AI 将彻底颠覆搜索领域,但现实情况却是,当我随手扔给它一个复杂问题时,一顿操作猛如虎,哐哐一顿搜索几百个网页,搜索结果却平平无奇。

仔细一看,要么堆砌了一堆零散的信息,要么抓不住重点,感觉就像是把一堆资料硬塞给我,自己却没怎么动脑子,像极了敷衍了事的职场人。

不过,这也不能全怪 AI。毕竟换位思考一下,即便是人类,带着问题去查资料时,也很容易被信息洪流冲昏头脑。不少 AI 产品开始对此进行优化,比如 OpenAI 和 Grok 在推理模式基础上又推出了 Deep Research/DeepSearch 模式。

国内厂商里,字节也刚刚给出了新的解决方案,对豆包的深度思考功能进行了升级。正在测试的豆包新版深度思考的一大亮点便是免费支持「边想边搜」,现在下载最新版豆包 APP,或在 PC 及 Web 版豆包中即可体验该功能。

APPSO 也第一时间进行了深度体验。

简单来说,用户无需单独开启搜索功能,只需打开深度思考模式,AI 能在推理过程中灵活调用搜索工具,进行多轮动态搜索。

从「先搜后想」到「边想边搜」,AI 终于学会了如何像人类一样搜索问题。

DeepSearch+深度思考,豆包这个新功能不止让你少问几步

生成式 AI 发展两年了,颠覆搜索了吗?

早期的 AI 搜索工具虽然不怎么做互联网的搬运工,但模式上还是传统的「先搜后想」的套路——先把网上的信息抓一堆,再根据这些信息组织答案。

豆包新版深度思考则不一样,它结合了深度思考能力,把搜索和推理捆绑在一起,基于每一步的思考结果进行多次搜索,能让回答更有逻辑、更贴近需求。听起来挺玄乎,我们也用几个问题来实际体验一下。

先来个贴近生活的投资问题,「如果我从今年 1 月开始同时投资小米股票和英伟达股票,截至 3 月 24 日收盘哪个收益更高?」豆包的回答让我有点意外。

APPSO 拆解了豆包新版深度思考的思考过程,我们发现它的搜索逻辑有了明显不同:

1. 先进行问题分析和框架设定

2. 获取初步信息建立概念

3. 深入挖掘具体数据点

4. 遇到不确定性时进行额外搜索

5. 基于现有信息进行合理推断,并给出结论

之前 AI 可能会直接给出两支股票的涨跌百分比,然后就直接得出结论,但豆包新版深度思考则进行了多轮思考,进行问题分析和框架设定(时间段-股价表现-调用搜索工具)。

一旦有了较为妥当的思路,它便会继续搜索,比如在互联网上找到了 14 篇参考资料,这个过程仅仅是为了获取一个笼统却清晰的概念,方便进一步边思考边有针对性地搜索。

由于缺乏 1 月 1 日(休市)的准确收盘价,以及英伟达的数据存在不确定性,它需要再次搜索来确认这两个关键数据点,最后基于现有信息进行合理推断。

最后的结果,也不只是给出投资收益的对比,还对股价波动因素进行分析,并提示了未来的风险,甚至整理成了表格,考虑得颇为周全。

洞察到了我想问但没说出来的问题,把需要「追问」的细节提前融入答案之中,妥妥一个醒目的投资顾问。


最近我计划去新加坡旅游,想知道有没有最优的往返机票方案。

普通 AI 搜索引擎可能一股脑儿搜几百个网页经验帖,然后汇总交差,但豆包新版深度思考则有所不同,它会带着问题思考,拆解几个关键点——出发地、时间、预算等,然后逐步深入分析,形成一个「思考-检索-继续思考」的良性循环。

而这恰恰也说明了豆包的新版深度思考倾向于「思考驱动」而非「搜索驱动」。

换句话说,以前需要照顾 AI 的能力,把大问题拆分为几个小问题,一步步问清楚;可现在完全不用,直接丢出你的需求,剩下的交给豆包就行。

或许正因如此,它的整体响应速度体感上并不慢,体验相当流畅。

有个很现实的问题,没时间看国足比赛怎么办,别急,这时候就可以请出豆包新版深度思考来救场。把你想知道的具体内容告诉豆包,比如比赛结果、关键时刻、球员表现或者规则积分,它就能化身速通大师,省时又高效。

当然,如果不开启深度思考功能,我们会发现,虽然回答依然快刀斩乱麻,效率没得说,但质量明显就差了一截。不仅缺乏更清晰的分点罗列,连逻辑层次感都显得单薄,甚至引用的资料信息更少。

这么一对比,像人类一样思考的重要性就凸显出来了。有了深度思考的加持,它能把答案打磨得更精致、更贴心,条理清晰不说,还能塞满干货,让你读起来既舒服又有收获。

接下来,我们用更贴近个人需求的决策场景来考验它。

对于 iPhone 16e,我们给出的观点是,这是一台酱香型手机,越晚入手越香,那它和 iPhone 16 比,哪个更有性价比,以及如果用腻了,又该换哪款备用机?

就像 Grok DeepSearch 标配的图表一样,豆包新版深度思考也提供了清晰的参数对比,屏幕、芯片、摄像头一目了然,甚至还贴心地准备了数据迁移建议,这贴心程度值得点赞。

逻辑性是豆包新版深度思考回答的最大特点。

针对 Android 备用机推荐问题,它不会一股脑儿抛给你一堆机型名字,而是通过「边想边搜」的迭代循环,针对你可能会用上的使用场景,再一步步搜索、推理,最后奉上一份既有逻辑又实用的推荐清单。

当然,扒蛛丝马迹这种细活儿,还是得交给 AI。

「悟空在第十四回中打死的六个盗贼,分别叫什么名字?该如何理解作者这一情节的安排?」豆包新版深度思考的回答不仅列出具体名字,还融入了佛学和心理学视角,分析得头头是道,时不时冒出几句金句,颇有亮点。

李白、杜甫和白居易是唐代诗人的标志性符号,那他们三者之间是否存在交集?

对于这个问题,在豆包新版深度思考的理解中,这种交集并不局限于现实生活的人际往来,还延伸到了更广阔的文学脉络以及彼此风格与创作上的相互影响。

最后所引用清代赵翼的点评「李杜诗篇万口传,至今已觉不新鲜;江山代有才人出,各领风骚数百年」,恰到好处,为整个分析增添了历史厚重感,也让人读后回味无穷。

从「先搜后想」到「边想边搜」,搜索的未来长什么样?

技术未来学家、Google 工程总监雷·库兹韦尔(Ray Kurzweil),曾在《奇点临近》一书中预测,未来的搜索将像人一样思考,而不是像机器一样索引。如今,这一预言正在成为现实。

之前的 AI 搜索,其「先搜后想」的模式是一个简单粗暴的线性过程:

「输入问题 → 调用搜索工具获取数据 → 基于数据进行推理 → 输出答案。」

这种方法的短板显而易见,非常依赖关键词匹配和网页索引技术,导致信息「广而不深」。

基于深度思考和 DeepSearch 的 AI 搜索已经大大解决了这个问题,AI 能理解自然语言中的复杂语义,比如问它「明天广州适合穿什么衣服?」就可以分析天气数据、时尚趋势、个人偏好等隐藏需求,实现多维信息关联。

而豆包新版深度思考与多轮搜索相结合的模式,进一步补足了深度思考和 DeepSearch 在处理复杂、模糊及动态信息需求时尚存的几块短板。

  1.  一轮搜索无法解决的复杂问题: 更好应对需要多轮信息整合、动态调整策略的复杂任务。在思考过程中多次搜索,让信息持续更新和补充,给出更全面、准确和深入的回答。
  2.  模糊查询与信息关联: 对于一些描述模糊、信息不完整的问题,「边想边搜」让模型在推理过程中不断搜索和验证,逐步缩小范围,找到相关信息
  3. 动态规划与多步骤任务: 在处理需要长期规划或多个步骤的任务时,「边想边搜」能够在每一步骤中进行信息校验和调整,提高了执行任务的成功率。

豆包新版深度思考「边想边搜」的执行路径,让我不禁想起最近常被提及的 Agent。「互联网之父」Berners-Lee 早在多年前就提出:

真正的智能体,就是在每个具体场景中,都能自动完成用户心里想做却没明确说出来的事情。

虽然豆包新版深度思考和 Agent 还有些区别,但某种程度上却是 Agent 工程化思路在搜索上的应用。Agent 自主决策和动态调整,将任务高度自动化,大大减少额外的数据预处理和人为干预。

说白了,就是让 AI 像一个聪明的助手,自己去网上找答案,它能自己动手,自己动脑,找到我们要的东西。用户不需要像喂饭一样把问题拆得细碎,才能得到满意回答。

由此我们也可以推理出 AI 时代理想的搜索过程:

  • 1. 接收并分析用户问题
    用户提出问题后,AI 会先分析问题的内容,拆解其核心需求,并尝试推测用户的真实意图。
  • 2. 自主选择搜索策略
    根据问题的性质,决定是用通用搜索还是直接调用特定专业数据源。它能记住常用工具和 API 的调用方式,直接利用现有网络资源(如站点地图或结构化数据)进行搜索,而非依赖预设流程。
  • 3. 多步骤动态搜索
    搜索不是一次性完成,而是分成多个连续步骤。先发起初步搜索,查看结果后,可能调整关键词、浏览网页深入挖掘,或转向其他数据源,模拟人类在网上探索的过程。
  • 4. 实时优化搜索路径
    在搜索过程中不断学习和判断。如果发现当前方向无效,它会自主放弃并尝试更有效的路径,如同经验丰富的专业人士那样灵活应变。
  • 5. 整合信息并生成结果
    搜集到足够信息后,它还会通过推理将零散内容重新组合,将结果整理成逻辑清晰的总结,确保输出符合用户需求。
  • 6. 记录决策过程
    每一步决策和推理都会留下清晰的记录,增强结果的可解释性,让用户能追溯其搜索逻辑。

如同媒介理论家保罗·莱文森所言,技术进化是人类认知结构的外延。每个时代技术的核心驱动力是信息处理能力的提升,当 AI 以越来越接近人类的思维方式处理信息,重塑的将不仅仅是我们对搜索的习惯。

作者:李超凡、莫崇宇

#欢迎关注爱范儿官方微信公众号:爱范儿(微信号:ifanr),更多精彩内容第一时间为您奉上。

爱范儿 | 原文链接 · 查看评论 · 新浪微博


❌
❌