前端网络实战手册:15个高频工作场景全解析
2026年1月15日 23:57
在前端开发中,网络问题是绕不开的坎——真机调试连不上、端口被占、跨域报错、线上打不开... 这些问题看似棘手,实则有固定排查逻辑。本文整理15个高频工作场景,从问题本质到解决方案逐一拆解,附关键命令与
思路与算法
题目要求通过移除部分横线段和竖线段,使剩余网格图中的正方形空洞面积最大。可以发现,正方形空洞的边长取决于移除的横向和纵向最大连续线段数目。因此,具体做法如下:
代码
###C++
class Solution {
public:
int maximizeSquareHoleArea(int n, int m, vector<int>& hBars, vector<int>& vBars) {
sort(hBars.begin(), hBars.end());
sort(vBars.begin(), vBars.end());
int hmax = 1, vmax = 1;
int hcur = 1, vcur = 1;
for (int i = 1; i < hBars.size(); i++) {
if (hBars[i] == hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = max(hmax, hcur);
}
for (int i = 1; i < vBars.size(); i++) {
if (vBars[i] == vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = max(vmax, vcur);
}
int side = min(hmax, vmax) + 1;
return side * side;
}
};
###Go
func maximizeSquareHoleArea(n int, m int, hBars []int, vBars []int) int {
sort.Ints(hBars)
sort.Ints(vBars)
hmax, vmax := 1, 1
hcur, vcur := 1, 1
for i := 1; i < len(hBars); i++ {
if hBars[i] == hBars[i - 1] + 1 {
hcur++
} else {
hcur = 1
}
hmax = max(hmax, hcur)
}
for i := 1; i < len(vBars); i++ {
if vBars[i] == vBars[i - 1] + 1 {
vcur++
} else {
vcur = 1
}
vmax = max(vmax, vcur)
}
side := min(hmax, vmax) + 1
return side * side
}
###Python
class Solution:
def maximizeSquareHoleArea(self, n: int, m: int, hBars: List[int], vBars: List[int]) -> int:
hBars.sort()
vBars.sort()
hmax, vmax = 1, 1
hcur, vcur = 1, 1
for i in range(1, len(hBars)):
if hBars[i] == hBars[i - 1] + 1:
hcur += 1
else:
hcur = 1
hmax = max(hmax, hcur)
for i in range(1, len(vBars)):
if vBars[i] == vBars[i - 1] + 1:
vcur += 1
else:
vcur = 1
vmax = max(vmax, vcur)
side = min(hmax, vmax) + 1
return side * side
###Java
class Solution {
public int maximizeSquareHoleArea(int n, int m, int[] hBars, int[] vBars) {
Arrays.sort(hBars);
Arrays.sort(vBars);
int hmax = 1, vmax = 1;
int hcur = 1, vcur = 1;
for (int i = 1; i < hBars.length; i++) {
if (hBars[i] == hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = Math.max(hmax, hcur);
}
for (int i = 1; i < vBars.length; i++) {
if (vBars[i] == vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = Math.max(vmax, vcur);
}
int side = Math.min(hmax, vmax) + 1;
return side * side;
}
}
###TypeScript
function maximizeSquareHoleArea(n: number, m: number, hBars: number[], vBars: number[]): number {
hBars.sort((a, b) => a - b);
vBars.sort((a, b) => a - b);
let hmax = 1, vmax = 1;
let hcur = 1, vcur = 1;
for (let i = 1; i < hBars.length; i++) {
if (hBars[i] === hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = Math.max(hmax, hcur);
}
for (let i = 1; i < vBars.length; i++) {
if (vBars[i] === vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = Math.max(vmax, vcur);
}
const side = Math.min(hmax, vmax) + 1;
return side * side;
}
###JavaScript
function maximizeSquareHoleArea(n, m, hBars, vBars) {
hBars.sort((a, b) => a - b);
vBars.sort((a, b) => a - b);
let hmax = 1, vmax = 1;
let hcur = 1, vcur = 1;
for (let i = 1; i < hBars.length; i++) {
if (hBars[i] === hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = Math.max(hmax, hcur);
}
for (let i = 1; i < vBars.length; i++) {
if (vBars[i] === vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = Math.max(vmax, vcur);
}
const side = Math.min(hmax, vmax) + 1;
return side * side;
}
###C#
public class Solution {
public int MaximizeSquareHoleArea(int n, int m, int[] hBars, int[] vBars) {
Array.Sort(hBars);
Array.Sort(vBars);
int hmax = 1, vmax = 1;
int hcur = 1, vcur = 1;
for (int i = 1; i < hBars.Length; i++) {
if (hBars[i] == hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = Math.Max(hmax, hcur);
}
for (int i = 1; i < vBars.Length; i++) {
if (vBars[i] == vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = Math.Max(vmax, vcur);
}
int side = Math.Min(hmax, vmax) + 1;
return side * side;
}
}
###C
int compare(const void* a, const void* b) {
return *(int*)a - *(int*)b;
}
int maximizeSquareHoleArea(int n, int m, int* hBars, int hBarsSize, int* vBars, int vBarsSize) {
qsort(hBars, hBarsSize, sizeof(int), compare);
qsort(vBars, vBarsSize, sizeof(int), compare);
int hmax = 1, vmax = 1;
int hcur = 1, vcur = 1;
for (int i = 1; i < hBarsSize; i++) {
if (hBars[i] == hBars[i - 1] + 1) {
hcur++;
} else {
hcur = 1;
}
hmax = fmax(hmax, hcur);
}
for (int i = 1; i < vBarsSize; i++) {
if (vBars[i] == vBars[i - 1] + 1) {
vcur++;
} else {
vcur = 1;
}
vmax = fmax(vmax, vcur);
}
int side = fmin(hmax, vmax) + 1;
return side * side;
}
###Rust
use std::cmp;
impl Solution {
pub fn maximize_square_hole_area(n: i32, m: i32, mut h_bars: Vec<i32>, mut v_bars: Vec<i32>) -> i32 {
h_bars.sort_unstable();
v_bars.sort_unstable();
let mut hmax = 1;
let mut vmax = 1;
let mut hcur = 1;
let mut vcur = 1;
for i in 1..h_bars.len() {
if h_bars[i] == h_bars[i - 1] + 1 {
hcur += 1;
} else {
hcur = 1;
}
hmax = cmp::max(hmax, hcur);
}
for i in 1..v_bars.len() {
if v_bars[i] == v_bars[i - 1] + 1 {
vcur += 1;
} else {
vcur = 1;
}
vmax = cmp::max(vmax, vcur);
}
let side = cmp::min(hmax, vmax) + 1;
side * side
}
}
复杂度分析
时间复杂度:$O(h \log h + v \log v)$,其中 $h$ 和 $v$ 分别为数组 $\textit{hBars}$ 和 $\textit{vBars}$ 的长度。对 $\textit{hBars}$ 和 $\textit{vBars}$ 排序分别需要 $O(h \log h)$ 和 $O(v \log v)$。
空间复杂度:$O(\log h + \log v)$。对 $\textit{hBars}$ 和 $\textit{vBars}$ 排序分别需要 $O(\log h)$ 和 $O(\log v)$ 的栈空间。