普通视图

发现新文章,点击刷新页面。
今天 — 2026年1月28日首页

1-3.【GCD】DispatchQueue 的底层数据结构是什么?

作者 项阿丑
2026年1月27日 17:36

它是一个复杂的 C 结构体,集成了任务队列、线程管理、性能优化等多个子系统

核心数据结构:dispatch_queue_s

// libdispatch 源码中的核心结构(简化)
struct dispatch_queue_s {
    // 1. 基础头部信息(所有 dispatch 对象共享)
    struct dispatch_object_s _as_do[0];      // 转换为 dispatch_object
    struct dispatch_queue_s *_as_dq[0];      // 转换为 dispatch_queue
    
    // 2. 队列标识信息
    const struct dispatch_queue_vtable_s *vtable;  // 虚函数表(多态)
    const char *dq_label;                    // 队列标签(我们设置的 label)
    uint16_t dq_width;                       // 并发宽度(串行为1)
    uint32_t dq_serialnum;                   // 序列号(唯一标识)
    
    // 3. 目标队列和层次结构
    struct dispatch_queue_s *dq_targetq;     // 目标队列(优先级继承)
    uintptr_t dq_targetq_override;           // 目标队列覆盖(QoS 传播)
    
    // 4. 任务队列管理
    union {
        struct dispatch_queue_specific_head_s *dq_specific_head;
        struct dispatch_source_refs_s *ds_refs;
    } _dq_specific;
    
    // 5. 同步原语
    struct dispatch_object_s *volatile dq_items_tail;  // 任务队列尾部
    struct dispatch_object_s *volatile dq_items_head;  // 任务队列头部
    uint32_t dq_atomic_flags;                // 原子标志位
    
    // 6. 线程池和性能管理
    struct dispatch_continuation_s *volatile dq_last;  // 最后执行的任务
    uint32_t dq_side_specific_ints;           // 性能计数器
    pthread_priority_t dq_priority;           // 优先级缓存
};

详细结构解析

1. 多态设计:dispatch_object

// 所有 GCD 对象的基类
struct dispatch_object_s {
    _DISPATCH_OBJECT_HEADER(object);  // 头部宏,包含引用计数等
};

// DispatchQueue 通过以下宏实现多态
#define _DISPATCH_QUEUE_CLASS_HEADER(queue_label, ...) \
    _DISPATCH_OBJECT_HEADER(queue) \
    const char *dq_label; \
    uint16_t dq_width;

// 这使得:
dispatch_queue_t queue = dispatch_queue_create("com.test", NULL);
dispatch_object_t obj = (dispatch_object_t)queue;  // 可以向上转型

2. 任务队列:双向链表

// 实际存储任务的结构
struct dispatch_continuation_s {
    struct dispatch_object_s dc_do;           // 对象头部
    dispatch_function_t dc_func;              // 执行函数
    void *dc_ctxt;                            // 上下文参数
    void *dc_data;                            // 额外数据
    void *dc_other;                           // 关联数据
    
    // 链表指针
    struct dispatch_continuation_s *volatile dc_next;
    struct dispatch_continuation_s *dc_prev;
    
    // 队列关联
    struct dispatch_queue_s *dc_queue;        // 所属队列
};

// 队列如何管理任务
struct dispatch_queue_s {
    // ...
    struct dispatch_continuation_s *dq_items_head;  // 队头
    struct dispatch_continuation_s *dq_items_tail;  // 队尾
    uint32_t dq_nitems;                           // 任务计数
};

3. 队列层次结构

// 队列间的父子关系(目标队列机制)
struct dispatch_queue_hierarchy_s {
    dispatch_queue_t dqh_queue;              // 当前队列
    dispatch_queue_t dqh_target;             // 目标队列
    uintptr_t dqh_override;                  // QoS 覆盖
    uint16_t dqh_priority;                   // 优先级
};

// 示例:
// 自定义队列 → 全局队列 → 根队列
// com.test.queue → com.apple.root.default-qos → kernel

4. 性能优化结构

// 队列的侧面(side)数据结构
struct dispatch_queue_side_s {
    // 用于性能优化的缓存
    uint64_t dq_side_timer;                 // 定时器相关
    uint64_t dq_side_wlh;                   // 工作循环句柄
    uint32_t dq_side_bits;                  // 状态位
};

// 队列特定数据(dispatch_queue_set_specific/get_specific)
struct dispatch_queue_specific_head_s {
    struct dispatch_specific_queue_s *dsq_next;
    void *dsq_data;                         // 用户设置的数据
    uintptr_t dsq_key;                      // 键值
};

不同队列类型的内部差异

1. 全局队列(Global Queue)

// 全局队列有特殊结构
struct dispatch_queue_global_s {
    struct dispatch_queue_s _as_dq[0];      // 基础队列部分
    
    // 全局队列特有
    int dgq_priority;                       // 优先级索引
    unsigned int dgq_flags;                 // 标志位
    
    // 共享线程池引用
    struct dispatch_pthread_root_queue_s *dgq_thread_pool;
    struct dispatch_workloop_s *dgq_wlh;    // 工作循环
};

2. 主队列(Main Queue)

// 主队列的特殊处理
struct dispatch_queue_main_s {
    struct dispatch_queue_s _as_dq[0];
    
    // 与 RunLoop 集成
    CFRunLoopRef _dq_runloop;               // 关联的 RunLoop
    CFRunLoopSourceRef _dq_runloop_source;  // 事件源
    
    // 串行执行保证
    pthread_t _dq_main_thread;              // 主线程标识
    uint32_t _dq_main_flags;                // 主队列标志
};

3. 并发队列 vs 串行队列

// 区别主要在 dq_width 字段:
struct dispatch_queue_s {
    uint16_t dq_width;  // 并发宽度
    // 值为 1:串行队列(DISPATCH_QUEUE_SERIAL)
    // 值 > 1:并发队列(DISPATCH_QUEUE_CONCURRENT)
    // 特殊值:DISPATCH_QUEUE_WIDTH_MAX(并发无限)
};

// 并发队列还有额外的管理结构
struct dispatch_queue_concurrent_s {
    struct dispatch_queue_s _as_dq[0];
    
    // 用于并发控制
    os_unfair_lock _dq_lock;                // 内部锁
    uint32_t _dq_running;                   // 正在运行的任务数
    uint32_t _dq_max_running;               // 最大并发数
};

内存布局示例

// DispatchQueue 在内存中的大致布局
+-----------------------------------+
| dispatch_object_s header          | ← 引用计数、类型信息等
|-----------------------------------|
| vtable pointer                    | ← 虚函数表(决定队列类型行为)
|-----------------------------------|
| dq_label ("com.example.queue")    | ← 队列标签指针
|-----------------------------------|
| dq_width (1 或 n)                 | ← 并发宽度
|-----------------------------------|
| dq_serialnum (0x1234)             | ← 序列号
|-----------------------------------|
| dq_targetq (指向全局队列)          | ← 目标队列指针
|-----------------------------------|
| dq_items_head → [任务1] → [任务2]  | ← 任务链表头
| dq_items_tail → [任务n]            | ← 任务链表尾
|-----------------------------------|
| dq_last (最后执行的任务指针)        | ← 性能优化
|-----------------------------------|
| dq_priority (QoS 值)              | ← 优先级缓存
+-----------------------------------+

队列创建过程

创建自定义队列时的内部操作:

dispatch_queue_t dispatch_queue_create(const char *label, 
                                       dispatch_queue_attr_t attr) {
    // 1. 分配内存
    struct dispatch_queue_s *dq = calloc(1, sizeof(struct dispatch_queue_s));
    
    // 2. 设置基本字段
    dq->dq_label = label ? strdup(label) : NULL;
    dq->dq_serialnum = dispatch_atomic_inc(&g_serialnum);  // 全局递增
    
    // 3. 根据属性设置并发宽度
    if (attr == DISPATCH_QUEUE_SERIAL || attr == NULL) {
        dq->dq_width = 1;  // 串行
    } else if (attr == DISPATCH_QUEUE_CONCURRENT) {
        dq->dq_width = DISPATCH_QUEUE_WIDTH_MAX;  // 并发
    }
    
    // 4. 设置目标队列(通常是全局队列)
    dq->dq_targetq = _dispatch_get_root_queue(qos, overcommit);
    
    // 5. 设置虚函数表
    if (dq->dq_width == 1) {
        dq->vtable = &_dispatch_queue_serial_vtable;
    } else {
        dq->vtable = &_dispatch_queue_concurrent_vtable;
    }
    
    // 6. 初始化任务链表
    dq->dq_items_head = dq->dq_items_tail = NULL;
    
    return dq;
}

任务执行流程数据结构

// 任务提交和执行涉及的数据结构
struct dispatch_queue_workloop_s {
    // 工作循环(每个线程一个)
    pthread_workqueue_t dqw_workqueue;      // 底层工作队列
    uint32_t dqw_refcnt;                    // 引用计数
    uint16_t dqw_qos;                       // QoS 级别
    
    // 任务调度
    struct dispatch_continuation_s *dqw_head;
    struct dispatch_continuation_s *dqw_tail;
    
    // 线程池管理
    uint32_t dqw_thread_pool_size;          // 线程池大小
    uint32_t dqw_thread_pool_active;        // 活跃线程数
};

调试信息

// 可以通过私有 API 查看内部结构(仅调试)
extension DispatchQueue {
    func debugInfo() {
        let queue = self as AnyObject
        
        // 使用 Objective-C 运行时查看内部结构
        let ivars = class_copyIvarList(object_getClass(queue), nil)
        while let ivar = ivars?.pointee {
            let name = String(cString: ivar_getName(ivar)!)
            print("Ivar: (name)")
        }
    }
}

// 或者使用 LLDB 调试
(lldb) po (id)0x600003d6c040  // 假设这是队列地址
// 可以看到内部字段(如果符号可用)

性能优化特性

1. 内联缓存

struct dispatch_queue_cache_s {
    // 缓存最近使用的队列
    struct dispatch_queue_s *dqc_queues[DISPATCH_QUEUE_CACHE_SIZE];
    uint32_t dqc_hits;                      // 缓存命中次数
    uint32_t dqc_misses;                    // 缓存未命中
};

2. 优先级继承

struct dispatch_queue_priority_s {
    uint16_t dqp_priority;                  // 当前优先级
    uint16_t dqp_inherited;                 // 继承的优先级
    struct dispatch_queue_s *dqp_source;    // 优先级来源队列
};

总结

DispatchQueue 的底层数据结构:

  1. 复杂但高效:多层结构体设计,兼顾灵活性和性能
  2. 基于对象模型:所有 dispatch 对象共享基类,实现多态
  3. 链表管理任务:使用双向链表存储待执行任务
  4. 层次化设计:队列有目标队列,形成优先级继承链
  5. 类型特定扩展:不同队列类型有不同字段和虚函数表
  6. 性能优化密集:包含大量缓存、计数器和优化字段

简单来说DispatchQueue 在底层是一个精心设计的任务调度引擎,它:

  • 结构体表示队列(而非类)
  • 链表管理任务
  • 虚函数表实现不同队列类型的行为
  • 目标队列机制实现优先级继承
  • 高度优化以减少内存占用和提高性能

这种设计使得 GCD 能够在极小的开销下处理数千个队列和数百万个任务调度。

👉 追问:任务是如何入队、出队的?

任务入队出队是 GCD 的核心机制,涉及原子操作、无锁队列、优先级调度等多个复杂系统。

核心数据结构关系

// 简化版数据结构关系
struct dispatch_queue_s {
    // 任务链表(无锁队列)
    struct dispatch_continuation_s *volatile dq_items_head;  // 队头
    struct dispatch_continuation_s *volatile dq_items_tail;  // 队尾
    uint32_t dq_nitems;                           // 任务计数
    
    // 线程池引用
    struct dispatch_queue_workloop_s *dq_wlh;     // 工作循环
};

struct dispatch_continuation_s {
    // 任务数据和函数指针
    dispatch_function_t dc_func;      // 要执行的函数
    void *dc_ctxt;                    // 上下文参数
    
    // 链表指针(双向链表)
    struct dispatch_continuation_s *volatile dc_next;
    struct dispatch_continuation_s *dc_prev;
    
    // 标记信息
    uintptr_t dc_flags;              // 标志位(同步/异步/屏障等)
};

1. 入队过程(Enqueue)

异步任务入队(dispatch_async)

// 用户调用
queue.async {
    print("任务执行")
}

// 内部处理流程
func dispatch_async(queue: dispatch_queue_t, block: @escaping () -> Void) {
    // 1. 封装任务
    let continuation = _dispatch_continuation_alloc()
    continuation.dc_func = _dispatch_call_block_and_release
    continuation.dc_ctxt = Block_copy(block)  // 复制block到堆上
    
    // 2. 获取队列状态
    let old_state = queue.dq_state
    
    // 3. 尝试快速路径(无锁操作)
    if _dispatch_queue_try_acquire_async(queue) {
        // 快速路径:队列空闲,直接调度
        _dispatch_continuation_schedule(queue, continuation)
        return
    }
    
    // 4. 慢速路径:需要加锁或队列繁忙
    _dispatch_queue_push(queue, continuation)
}

详细入队步骤

// 实际入队函数
void _dispatch_queue_push(dispatch_queue_t dq, 
                         dispatch_continuation_t dc) {
    
    // 步骤1:设置任务状态
    dc->dc_queue = dq;           // 关联队列
    dc->dc_flags = ASYNC;        // 标记为异步
    
    // 步骤2:原子操作将任务加入链表尾部
    dispatch_continuation_t prev_tail;
    do {
        prev_tail = dq->dq_items_tail;
        dc->dc_prev = prev_tail;           // 设置前驱
    } while (!os_atomic_cmpxchg(&dq->dq_items_tail, 
                                prev_tail, 
                                dc, 
                                relaxed));
    
    // 步骤3:更新前一个节点的next指针
    if (prev_tail) {
        prev_tail->dc_next = dc;          // 连接链表
    } else {
        // 这是第一个任务,更新头指针
        dq->dq_items_head = dc;
    }
    
    // 步骤4:原子递增任务计数
    os_atomic_inc(&dq->dq_nitems, relaxed);
    
    // 步骤5:唤醒工作线程(如果需要)
    _dispatch_queue_wakeup(dq);
}

屏障任务特殊处理

// 屏障任务的入队
void _dispatch_barrier_async(dispatch_queue_t dq, 
                            dispatch_block_t block) {
    
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    dc->dc_func = _dispatch_call_block_and_release;
    dc->dc_ctxt = Block_copy(block);
    dc->dc_flags = BARRIER;               // 关键:设置屏障标志
    
    // 屏障任务需要特殊处理:
    // 1. 插入到队列末尾
    // 2. 标记队列进入"屏障模式"
    // 3. 等待前面所有任务完成
    
    _dispatch_queue_push_barrier(dq, dc);
    
    // 更新队列状态
    dq->dq_atomic_flags |= DISPATCH_QUEUE_IN_BARRIER;
}

2. 出队过程(Dequeue)

工作线程取任务

// 工作线程的主循环
void *_dispatch_worker_thread(void *context) {
    dispatch_queue_t dq = (dispatch_queue_t)context;
    
    while (1) {
        // 步骤1:获取下一个任务
        dispatch_continuation_t dc = _dispatch_queue_pop(dq);
        
        if (dc) {
            // 步骤2:执行任务
            _dispatch_continuation_invoke(dq, dc);
            
            // 步骤3:任务完成后处理
            _dispatch_continuation_free(dc);
        } else {
            // 步骤4:无任务,可能休眠或处理其他队列
            _dispatch_worker_yield_or_exit(dq);
        }
    }
    return NULL;
}

详细出队实现

// 从队列弹出任务
dispatch_continuation_t _dispatch_queue_pop(dispatch_queue_t dq) {
    
    // 步骤1:检查队列状态
    if (dq->dq_nitems == 0) {
        return NULL;  // 队列为空
    }
    
    // 步骤2:处理串行队列(简单)
    if (dq->dq_width == 1) {  // 串行队列
        return _dispatch_queue_pop_serial(dq);
    }
    
    // 步骤3:处理并发队列(复杂)
    return _dispatch_queue_pop_concurrent(dq);
}

// 串行队列出队(简单FIFO)
dispatch_continuation_t _dispatch_queue_pop_serial(dispatch_queue_t dq) {
    
    // 原子操作获取队头
    dispatch_continuation_t head;
    do {
        head = dq->dq_items_head;
        if (!head) return NULL;  // 队列为空
        
        // 尝试将头指针指向下一个任务
    } while (!os_atomic_cmpxchg(&dq->dq_items_head, 
                                head, 
                                head->dc_next, 
                                acquire));
    
    // 如果队列变空,清空尾指针
    if (head->dc_next == NULL) {
        dq->dq_items_tail = NULL;
    }
    
    // 更新任务计数
    os_atomic_dec(&dq->dq_nitems, relaxed);
    
    // 清理链表指针
    head->dc_next = NULL;
    head->dc_prev = NULL;
    
    return head;
}

// 并发队列出队(多线程安全)
dispatch_continuation_t _dispatch_queue_pop_concurrent(dispatch_queue_t dq) {
    
    // 使用原子操作+重试机制
    dispatch_continuation_t task = NULL;
    bool acquired = false;
    
    while (!acquired) {
        // 原子读取队头
        dispatch_continuation_t old_head = dq->dq_items_head;
        
        if (!old_head) {
            return NULL;  // 队列为空
        }
        
        // 尝试获取任务所有权
        acquired = os_atomic_cmpxchg(&dq->dq_items_head, 
                                     old_head, 
                                     old_head->dc_next, 
                                     acquire);
        
        if (acquired) {
            task = old_head;
            
            // 如果这是最后一个任务
            if (task->dc_next == NULL) {
                // 需要原子更新尾指针
                os_atomic_store(&dq->dq_items_tail, NULL, relaxed);
            }
        }
        // 如果失败,说明其他线程抢先获取了,重试
    }
    
    os_atomic_dec(&dq->dq_nitems, relaxed);
    task->dc_next = NULL;
    task->dc_prev = NULL;
    
    return task;
}

3. 任务执行流程

任务执行函数

// 执行任务的函数
void _dispatch_continuation_invoke(dispatch_queue_t dq,
                                   dispatch_continuation_t dc) {
    
    // 步骤1:保存当前队列上下文
    dispatch_queue_t old_dq = _dispatch_thread_getspecific(dispatch_queue_key);
    _dispatch_thread_setspecific(dispatch_queue_key, dq);
    
    // 步骤2:设置线程名字(便于调试)
    if (dq->dq_label) {
        pthread_setname_np(dq->dq_label);
    }
    
    // 步骤3:执行任务函数
    dc->dc_func(dc->dc_ctxt);
    
    // 步骤4:恢复之前的队列上下文
    _dispatch_thread_setspecific(dispatch_queue_key, old_dq);
    
    // 步骤5:如果是同步任务,发送信号
    if (dc->dc_flags & SYNC) {
        _dispatch_semaphore_signal(dc->dc_semaphore);
    }
}

屏障任务的特殊执行

// 屏障任务的执行
void _dispatch_barrier_execute(dispatch_queue_t dq,
                               dispatch_continuation_t dc) {
    
    // 步骤1:等待队列中所有前置任务完成
    while (dq->dq_running > 0) {
        // 忙等待或让出CPU
        _dispatch_hardware_pause();
    }
    
    // 步骤2:执行屏障任务(独占执行)
    _dispatch_continuation_invoke(dq, dc);
    
    // 步骤3:清除屏障标志
    dq->dq_atomic_flags &= ~DISPATCH_QUEUE_IN_BARRIER;
    
    // 步骤4:唤醒等待的后续任务
    _dispatch_queue_wakeup_next(dq);
}

4. 性能优化机制

任务批处理

// 批量处理任务(减少锁开销)
void _dispatch_queue_drain(dispatch_queue_t dq) {
    
    // 尝试一次性取出多个任务
    dispatch_continuation_t batch[16];
    int count = 0;
    
    // 批量出队
    for (int i = 0; i < 16; i++) {
        dispatch_continuation_t dc = _dispatch_queue_pop_fast(dq);
        if (!dc) break;
        
        batch[count++] = dc;
    }
    
    if (count == 0) return;
    
    // 批量执行
    for (int i = 0; i < count; i++) {
        _dispatch_continuation_invoke(dq, batch[i]);
        _dispatch_continuation_free(batch[i]);
    }
}

工作窃取(Work Stealing)

// 当线程空闲时,尝试从其他队列窃取任务
dispatch_continuation_t _dispatch_worksteal(void) {
    
    // 步骤1:获取当前线程的工作队列
    dispatch_queue_t current_queue = _dispatch_thread_get_queue();
    
    // 步骤2:遍历全局队列列表
    for (int i = 0; i < global_queue_count; i++) {
        dispatch_queue_t target = global_queues[i];
        
        // 跳过自己的队列和空队列
        if (target == current_queue) continue;
        if (target->dq_nitems == 0) continue;
        
        // 步骤3:尝试窃取任务
        dispatch_continuation_t stolen = _dispatch_queue_try_steal(target);
        if (stolen) {
            return stolen;  // 窃取成功
        }
    }
    
    return NULL;  // 没有可窃取的任务
}

5. 同步任务特殊处理

dispatch_sync 的实现

void dispatch_sync(dispatch_queue_t dq, dispatch_block_t block) {
    
    // 优化:如果当前已经在目标队列上,直接执行
    if (_dispatch_queue_is_current(dq)) {
        block();
        return;
    }
    
    // 创建同步任务结构
    struct dispatch_sync_context_s {
        dispatch_semaphore_t sema;
        dispatch_block_t block;
        bool done;
    } context;
    
    context.sema = dispatch_semaphore_create(0);
    context.block = block;
    context.done = false;
    
    // 创建任务
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    dc->dc_func = _dispatch_sync_invoke;
    dc->dc_ctxt = &context;
    dc->dc_flags = SYNC;
    dc->dc_semaphore = context.sema;
    
    // 入队
    _dispatch_queue_push(dq, dc);
    
    // 等待任务完成
    dispatch_semaphore_wait(context.sema, DISPATCH_TIME_FOREVER);
    
    // 检查是否成功执行
    if (!context.done) {
        // 发生错误
        dispatch_panic("dispatch_sync failed");
    }
}

// 同步任务执行函数
static void _dispatch_sync_invoke(void *ctxt) {
    struct dispatch_sync_context_s *ctx = ctxt;
    ctx->block();
    ctx->done = true;
}

6. 优先级处理

QoS 传播和提升

// 处理任务的优先级
void _dispatch_queue_adjust_priority(dispatch_queue_t dq,
                                     dispatch_continuation_t dc) {
    
    // 获取任务的 QoS
    qos_class_t task_qos = _dispatch_continuation_get_qos(dc);
    
    // 如果任务优先级高于队列当前优先级
    if (task_qos > dq->dq_priority) {
        // 提升队列优先级
        qos_class_t old_qos = dq->dq_priority;
        dq->dq_priority = task_qos;
        
        // 重新调度队列中的工作线程
        _dispatch_queue_reschedule(dq, old_qos, task_qos);
    }
    
    // 设置执行线程的 QoS
    pthread_set_qos_class_self_np(task_qos, 0);
}

完整流程示例

// 模拟一个任务从提交到完成的完整流程
func exampleTaskLifecycle() {
    let queue = DispatchQueue(label: "com.example", attributes: .concurrent)
    
    // 用户提交任务
    queue.async {
        print("任务执行开始")
        sleep(1)
        print("任务执行结束")
    }
    
    // 内部流程:
    // 1. async() 创建 dispatch_continuation_t
    // 2. 原子操作将任务添加到 queue.dq_items_tail
    // 3. queue.dq_nitems 原子递增
    // 4. _dispatch_queue_wakeup() 唤醒工作线程
    // 5. 工作线程从 queue.dq_items_head 取出任务
    // 6. 调用 dc_func(dc_ctxt) 执行任务
    // 7. 任务完成,dc 被释放
    // 8. 工作线程继续取下一个任务或休眠
}

7. 内存管理优化

任务缓存池

// 避免频繁分配释放 dispatch_continuation_t
struct dispatch_continuation_cache_s {
    dispatch_continuation_t free_list;      // 空闲列表
    uint32_t count;                         // 缓存数量
    os_unfair_lock lock;                    // 保护锁
};

// 获取一个任务结构(优先从缓存取)
dispatch_continuation_t _dispatch_continuation_alloc(void) {
    dispatch_continuation_cache_t cache = &g_continuation_cache;
    
    // 尝试从缓存获取
    os_unfair_lock_lock(&cache->lock);
    if (cache->free_list) {
        dispatch_continuation_t dc = cache->free_list;
        cache->free_list = dc->dc_next;
        cache->count--;
        os_unfair_lock_unlock(&cache->lock);
        
        // 清零复用
        memset(dc, 0, sizeof(struct dispatch_continuation_s));
        return dc;
    }
    os_unfair_lock_unlock(&cache->lock);
    
    // 缓存为空,分配新的
    return calloc(1, sizeof(struct dispatch_continuation_s));
}

// 释放任务结构(放入缓存)
void _dispatch_continuation_free(dispatch_continuation_t dc) {
    dispatch_continuation_cache_t cache = &g_continuation_cache;
    
    os_unfair_lock_lock(&cache->lock);
    if (cache->count < DISPATCH_CONTINUATION_CACHE_MAX) {
        // 放入缓存
        dc->dc_next = cache->free_list;
        cache->free_list = dc;
        cache->count++;
        os_unfair_lock_unlock(&cache->lock);
    } else {
        os_unfair_lock_unlock(&cache->lock);
        free(dc);  // 缓存已满,直接释放
    }
}

总结

任务入队出队的核心机制:

入队过程

  1. 封装任务:将block封装成 dispatch_continuation_t
  2. 原子操作:使用CAS(Compare-And-Swap)将任务添加到链表尾部
  3. 唤醒机制:如果需要,唤醒工作线程处理任务
  4. 优先级处理:根据任务QoS调整队列优先级

出队过程

  1. 原子竞争:多个工作线程竞争获取任务(无锁队列)
  2. 批量处理:可能一次性取出多个任务减少开销
  3. 工作窃取:空闲线程可以从其他队列窃取任务
  4. 屏障处理:屏障任务确保前后任务不交错执行

关键优化

  1. 无锁设计:使用原子操作避免锁竞争
  2. 缓存复用:重用任务结构体减少内存分配
  3. 批量处理:减少上下文切换开销
  4. 优先级继承:高优先级任务能更快执行
  5. 工作窃取:提高CPU利用率

简单比喻

  • 入队 像"快递站收件":你提交包裹(任务),快递站记录到清单(队列),通知快递员(线程)来取
  • 出队 像"快递员派件":快递员从清单取包裹,派送(执行),完成后标记完成
  • GCD 像"智能调度系统":动态分配快递员,优化路线,处理急件优先

这种设计使得 GCD 能够以极低的延迟处理数百万级的任务调度,同时保持高吞吐量和低CPU占用。

1-2.【GCD】GCD 是如何管理线程池的?线程是谁创建的?

作者 项阿丑
2026年1月27日 17:36

线程创建者:GCD 自己

GCD 是线程的实际创建者,但不是随意创建,而是通过高度优化的机制:

// 开发者层面:不直接创建线程
DispatchQueue.global().async {
    // GCD 内部决定:
    // 1. 从池中取出空闲线程
    // 2. 或创建新线程(如果必要)
    // 3. 或将任务排队等待
}

GCD 线程池的智能管理

1. 按需创建,延迟销毁

// GCD 线程生命周期:
// 初始状态:线程池为空
// 第一次提交任务 → 创建1个线程
// 持续提交任务 → 逐渐增加线程数
// 空闲一段时间 → 自动销毁多余线程(节省资源)

2. 线程复用策略

// 类似数据库连接池的模式
class GCDThreadPool {
    private var activeThreads: Set<Thread> = []
    private var idleThreads: Set<Thread> = []
    private var maxThreads: Int
    
    func getThread() -> Thread {
        if let thread = idleThreads.popFirst() {
            // 复用空闲线程
            activeThreads.insert(thread)
            return thread
        } else if activeThreads.count < maxThreads {
            // 创建新线程
            let thread = createThread()
            activeThreads.insert(thread)
            return thread
        } else {
            // 等待线程可用
            return waitForAvailableThread()
        }
    }
}

线程池的关键参数和策略

1. 线程数量限制

// 基于系统资源动态调整
class GCDThreadManager {
    // 主要考虑因素:
    // 1. CPU 核心数(决定最大并发度)
    let maxConcurrentThreads = ProcessInfo.processInfo.processorCount * 2
    
    // 2. 队列类型
    // 串行队列:通常1个线程
    // 并发队列:多个线程,但有限制
    
    // 3. 系统负载
    // 高负载时:减少线程数
    // 低负载时:增加线程数(更快响应)
}

2. QoS(服务质量)影响

// 不同优先级的任务使用不同线程池
DispatchQueue.global(qos: .userInteractive) // 最高优先级,更快获取线程
DispatchQueue.global(qos: .background)      // 最低优先级,可能等待更久

// 内部实现简化:
class QoSThreadPool {
    var highPriorityPool: ThreadPool  // .userInteractive, .userInitiated
    var defaultPool: ThreadPool        // .default
    var lowPriorityPool: ThreadPool    // .utility, .background
    
    func getThread(for qos: QoSClass) -> Thread {
        // 优先从对应优先级的池中获取
        // 高优先级可"借用"低优先级的线程(反之不行)
    }
}

具体工作机制示例

场景:处理大量任务

let queue = DispatchQueue.global()

// 模拟100个任务
for i in 1...100 {
    queue.async {
        sleep(1)  // 模拟1秒工作
        print("任务 (i) 完成,线程: (Thread.current)")
    }
}

// GCD 内部行为:
// 1. 前几个任务:创建新线程(比如4个,基于CPU核心数)
// 2. 继续提交:复用现有线程
// 3. 如果所有线程都忙:排队等待
// 4. 如果长时间排队:可能创建更多线程(但不超过上限)
// 5. 任务完成后:线程空闲,可用于新任务
// 6. 长时间空闲:销毁多余线程

避免的问题和优化

1. 防止线程爆炸

// 传统方式的问题
for _ in 0..<1000 {
    Thread { /* 工作 */ }.start()  // 可能创建1000个线程!
}

// GCD 的优化
let queue = DispatchQueue.global()
for _ in 0..<1000 {
    queue.async { /* 工作 */ }  // 可能只用8-16个线程处理
}

2. 负载均衡

// GCD 内部的工作窃取(Work Stealing)机制
class WorkStealingScheduler {
    var threadPools: [ThreadPool]
    
    func scheduleTask(_ task: Task) {
        // 1. 先尝试分配到最空闲的线程
        // 2. 如果所有线程都忙,但其他队列有闲置线程
        // 3. "窃取"闲置线程来执行任务
    }
}

3. 能耗优化(特别在移动设备)

// iOS/macOS 的能耗管理
class EnergyAwareThreadManager {
    func manageThreads() {
        // 考虑因素:
        // - CPU 频率调整(降频时减少线程)
        // - 电池状态(低电量时减少并发)
        // - 温度控制(过热时限制线程)
        // - 后台状态(后台模式用更少线程)
    }
}

线程生命周期管理

// 简化版 GCD 线程管理逻辑
class GCDThread {
    var state: ThreadState = .idle
    var lastUsed: TimeInterval = 0
    
    enum ThreadState {
        case idle      // 空闲,等待任务
        case active    // 正在执行任务
        case sleeping  // 休眠(可能被销毁)
    }
    
    func run() {
        while true {
            if let task = getTaskFromQueue() {
                state = .active
                task.execute()
                state = .idle
                lastUsed = currentTime()
            } else {
                // 空闲处理
                if shouldDestroyThread() {
                    cleanupAndExit()
                } else {
                    sleepForInterval()
                }
            }
        }
    }
}

特殊情况处理

1. 主线程的特殊性

// 主队列绑定到主线程
DispatchQueue.main.async {
    // 总是运行在主线程
    // GCD 不会为 main queue 创建新线程
    // 而是将任务提交到主线程的 RunLoop
}

// 主线程不是由 GCD 创建的
// 它是应用启动时由系统创建的

2. 同步执行的优化

// sync 调用时的线程优化
queue.sync {
    // 可能的优化:
    // 1. 如果当前线程就是目标队列的执行线程
    // 2. 直接在当前线程执行(避免线程切换)
    // 3. 这称为"队列归属检测"
}

实际调试观察

// 查看线程创建情况
let concurrentQueue = DispatchQueue(label: "test", attributes: .concurrent)

print("初始线程数: (Thread.getAll().count)")

for i in 0..<20 {
    concurrentQueue.async {
        print("任务 (i): (Thread.current)")
        usleep(100_000)  // 100ms
    }
}

// 观察结果:
// 1. 线程数不会无限增长
// 2. 线程会被复用(看到相同的 thread number)
// 3. 最终稳定在一定数量(如 CPU 核心数*2)

总结

GCD 线程管理的关键特点:

  1. 线程创建者:GCD 自己(通过系统调用),开发者不直接创建
  2. 按需创建:首次需要时创建,不是预先创建大量线程
  3. 智能复用:线程执行完任务后回到池中,等待下次使用
  4. 动态调整:根据系统负载、CPU核心数、任务类型动态调整线程数
  5. 上限控制:有最大线程数限制,防止线程爆炸
  6. 自动清理:空闲线程会被销毁,节省资源
  7. 优先级感知:不同 QoS 的任务可能使用不同的线程子池

这种设计使得 GCD 能够:

  • 最大化 CPU 利用率
  • 最小化线程创建/销毁开销
  • 自动适应不同硬件和负载
  • 为开发者隐藏复杂的线程管理细节

简单比喻:GCD 就像一个"智能线程管家",你只需要告诉它"要做什么工作"和"工作的重要程度",它会自动安排最合适的"工人"(线程)来完成,同时保证不雇佣过多工人浪费资源。

👉 追问:GCD 线程池和 pthread / NSThread 的关系?

GCD 线程池、pthread 和 NSThread 之间有清晰的层次关系,pthread 是底层基础,GCD 和 NSThread 都是基于它的高层抽象

层级关系

// 从高到低的抽象层次:
┌─────────────────────────┐
│   GCD (DispatchQueue)   │ ← 最高抽象:任务队列,自动线程管理
├─────────────────────────┤
│        NSThread         │ ← 中级抽象:面向对象的线程封装
├─────────────────────────┤
│       pthread_t         │ ← 底层抽象:POSIX线程,C语言API
└─────────────────────────┘

详细关系解析

1. pthread_t:最底层的基础

// 这是所有线程的根基(包括GCD创建的线程)
#include <pthread.h>

pthread_t thread;
pthread_create(&thread, NULL, worker_func, NULL);  // 创建线程

// GCD 内部最终会调用这个函数来创建线程
// 实际上,macOS/iOS 中的所有线程都是 pthread

2. NSThread:Objective-C 的封装

// NSThread 是对 pthread 的面向对象包装
class NSThread {
    // 内部持有 pthread_t
    private var _pthread: pthread_t
    
    // 创建线程时,内部调用 pthread_create()
    init(block: @escaping () -> Void) {
        _pthread = pthread_create(...)
    }
}

// 验证关系:
Thread.current // 返回当前线程的 NSThread 对象
pthread_self() // 返回当前线程的 pthread_t

// 实际上,Thread.current.pthread 可以获取底层 pthread_t
// (虽然这个属性不公开)

3. GCD 线程池的实现

// GCD 内部结构示意(简化版)
class GCDThreadPool {
    private var threads: [pthread_t] = []
    private var taskQueue: Queue<Task>
    
    func createThreadIfNeeded() {
        // 需要新线程时,创建 pthread
        var thread: pthread_t
        pthread_create(&thread, nil, { context in
            // 线程函数:不断从队列取任务执行
            while let task = taskQueue.dequeue() {
                task.execute()
            }
            return nil
        }, nil)
        
        threads.append(thread)
    }
    
    func execute(_ task: Task) {
        taskQueue.enqueue(task)
        // 如果没有空闲线程且未达上限,创建新线程
        if idleThreads.isEmpty && threads.count < maxThreads {
            createThreadIfNeeded()
        }
    }
}

实际运行时关系示例

场景:观察三者关系

// 创建一个 GCD 并发队列
let queue = DispatchQueue(label: "test", attributes: .concurrent)

// 提交任务
queue.async {
    // 获取三个层面的线程信息
    let nsThread = Thread.current        // NSThread 对象
    let pthreadId = pthread_self()       // pthread_t 标识
    let threadNumber = nsThread.value(forKeyPath: "private.seqNum")  // 内部编号
    
    print("""
    层级关系:
    1. NSThread: (nsThread)
    2. pthread_t: (pthreadId)
    3. 是否GCD创建: (nsThread.name?.contains("com.apple.root") == true)
    """)
    
    // 实际输出可能类似:
    // 1. NSThread: <NSThread: 0x600003d6c040>{number = 7, name = (null)}
    // 2. pthread_t: 0x70000a1000
    // 3. 是否GCD创建: true
}

核心区别对比

特性 GCD 线程池 NSThread pthread_t
抽象级别 最高(队列) 中(对象) 最低(句柄)
创建方式 自动管理 手动创建 手动创建
线程复用 ✅ 自动复用 ❌ 一对一 ❌ 一对一
内存管理 自动 ARC 管理 手动(pthread_join/exit)
跨平台 Apple 生态 Apple 生态 POSIX标准

具体实现细节

1. GCD 如何创建线程

// GCD 内部源码简化示意(libdispatch)
void _dispatch_worker_thread(void *context) {
    // 1. 注册为GCD工作线程
    _dispatch_thread_setspecific(dispatch_queue_key, context);
    
    // 2. 设置线程名字(便于调试)
    pthread_setname_np("com.apple.root.default-qos");
    
    // 3. 进入工作循环
    while (1) {
        // 从队列获取任务
        task = _dispatch_queue_get_task(queue);
        
        if (task) {
            _dispatch_worker_execute(task);
        } else {
            // 空闲处理
            if (should_terminate()) {
                pthread_exit(NULL);
            }
        }
    }
}

// 创建线程的函数
void _dispatch_thread_create(pthread_t *thread, dispatch_queue_t queue) {
    pthread_attr_t attr;
    pthread_attr_init(&attr);
    
    // 配置线程属性
    pthread_attr_set_qos_class_np(&attr, QOS_CLASS_DEFAULT, 0);
    
    // 最终调用 pthread_create
    pthread_create(thread, &attr, _dispatch_worker_thread, (void *)queue);
}

2. NSThread 的 pthread 包装

// NSThread 内部实现示意
@implementation NSThread {
    pthread_t _pthread;
    NSMutableDictionary *_threadDictionary;
}

- (void)start {
    if (_pthread != NULL) return;
    
    // 创建 pthread
    pthread_attr_t attr;
    pthread_attr_init(&attr);
    
    // 存储 self 以便在 C 函数中访问
    NSThread *threadSelf = self;
    
    int err = pthread_create(&_pthread, &attr,
                           _NSThread__start__, (__bridge void *)threadSelf);
    
    pthread_attr_destroy(&attr);
}

static void *_NSThread__start__(void *arg) {
    // 获取 NSThread 对象
    NSThread *thread = (__bridge NSThread *)arg;
    
    // 设置线程特定数据
    pthread_setspecific(NSThreadKey, (__bridge void *)thread);
    
    // 执行目标方法
    [thread main];
    
    return NULL;
}
@end

实际开发中的交互

1. 从 NSThread 获取 pthread

// 方法1:直接获取当前 pthread
let currentPthread = pthread_self()

// 方法2:从 NSThread(不推荐,使用私有API)
extension Thread {
    var pthread: pthread_t? {
        // 注意:这是私有API,App Store审核可能不通过
        let key = "pthread"  // 实际是私有字段
        return self.value(forKey: key) as? pthread_t
    }
}

2. 在 GCD 任务中操作线程

DispatchQueue.global().async {
    // 当前运行在 GCD 管理的 pthread 上
    
    // 可以设置线程名字(用于调试)
    pthread_setname_np("MyWorkerThread")
    
    // 可以获取并操作当前 pthread
    let pthread = pthread_self()
    
    // 可以设置线程优先级(但通常用 QoS 更好)
    var policy: Int32 = 0
    var param = sched_param()
    pthread_getschedparam(pthread, &policy, &param)
    param.sched_priority = 45  // 设置优先级
    pthread_setschedparam(pthread, policy, &param)
    
    // 注意:直接操作 pthread 可能干扰 GCD 的管理
}

3. 混合使用的陷阱

// ❌ 危险的混合使用
let thread = Thread {
    // 在线程中使用 GCD 同步到主队列
    DispatchQueue.main.sync {
        // 如果这个线程恰好是主线程 → 死锁!
        // 因为 Thread 创建的不是主线程,
        // 但理论上如果是主线程调用就会死锁
    }
}

// ✅ 安全的做法
let queue = DispatchQueue.global()
queue.async {
    // 在 GCD 管理的线程中使用 GCD
    DispatchQueue.main.async {
        // 总是安全的
    }
}

性能与开销对比

// 性能测试示例
func measureOverhead() {
    // 1. 直接创建 pthread(最快,但最底层)
    measure("pthread_create") {
        var thread: pthread_t
        pthread_create(&thread, nil, { _ in return nil }, nil)
        pthread_join(thread, nil)
    }
    
    // 2. 创建 NSThread(中等开销)
    measure("NSThread") {
        let thread = Thread { /* do nothing */ }
        thread.start()
        // 需要同步机制确保线程结束
    }
    
    // 3. GCD 提交任务(最低开销,因为复用线程)
    measure("GCD async") {
        let semaphore = DispatchSemaphore(value: 0)
        DispatchQueue.global().async {
            semaphore.signal()
        }
        semaphore.wait()
    }
}

// 典型结果(相对时间):
// pthread_create: 100ms(基准)
// NSThread: 120-150ms(额外对象开销)
// GCD async: 10-20ms(线程复用,极低开销)

调试技巧

1. 查看线程信息

// 在调试器中查看所有线程
(lldb) thread list
// 可以看到:
// * thread #1: tid = 0x1a2b3, 0x0000000100000000, 
//   queue = 'com.apple.main-thread'
// * thread #4: tid = 0x1a2b4, 0x0000000100001000,
//   queue = 'com.apple.root.default-qos'

// 查看线程堆栈
(lldb) bt all
// 会显示所有线程的调用栈,包括GCD工作线程

2. 识别线程来源

// 在代码中判断
if Thread.isMainThread {
    print("这是主线程")
}

// 判断是否为GCD线程
let threadName = Thread.current.name ?? ""
if threadName.hasPrefix("com.apple.root") {
    print("这是GCD线程池中的线程")
}

// 获取线程的QoS级别
let qos = Thread.current.qualityOfService
print("线程QoS: (qos)")

总结

关系链

应用层:GCD (DispatchQueue) → 使用并管理 → NSThread/pthread
          ↓
框架层:NSThread → 封装 → pthread_t
          ↓
系统层:pthread_t → 内核线程

核心要点

  1. pthread 是基石:所有线程最终都是 pthread,包括 GCD 创建的线程

  2. NSThread 是包装:提供面向对象的线程操作,底层仍是 pthread

  3. GCD 是管理者:基于 pthread 构建线程池,提供队列抽象

  4. 线程复用是关键:GCD 复用线程,而直接使用 pthread/NSThread 通常是一对一

  5. 抽象层级不同

    • pthread:关心"如何创建线程"
    • NSThread:关心"如何表示线程对象"
    • GCD:关心"如何组织任务执行"

简单比喻

  • pthread 就像"砖块"(基本单元)
  • NSThread 就像"有标签的砖块"(易于识别和管理)
  • GCD 就像"智能建筑系统"(自动调度砖块完成任务)

在实践中,优先使用 GCD,它提供最优的线程管理和性能。只有在需要特殊线程控制(如长时间后台计算、实时操作)时才考虑使用 NSThread 或 pthread。

1-1.【GCD】DispatchQueue 本质上是什么?它和线程是什么关系?

作者 项阿丑
2026年1月27日 17:35

DispatchQueue 是 GCD(Grand Central Dispatch)的核心抽象,它本质上是一个 任务调度管理器,而不是线程本身。

本质特性

1. 任务队列

  • 存储要执行的任务(闭包或函数)
  • 遵循 FIFO(先进先出)原则
  • 可以是串行(serial)或并发(concurrent)
// 串行队列 - 一次执行一个任务
let serialQueue = DispatchQueue(label: "com.example.serial")

// 并发队列 - 可同时执行多个任务
let concurrentQueue = DispatchQueue(label: "com.example.concurrent", attributes: .concurrent)

2. 线程池管理器

  • 管理底层线程池(thread pool)
  • 自动复用线程,避免频繁创建销毁
  • 根据系统负载动态调整线程数

与线程的关系

关键区别

DispatchQueue 线程 (Thread)
高级抽象,任务调度器 低级执行单元
管理任务执行顺序 CPU调度的基本单位
自动线程管理 需要手动管理生命周期
系统优化负载均衡 固定资源占用

实际关系

// 示例:队列与线程的关系
let queue = DispatchQueue(label: "test", attributes: .concurrent)

for i in 1...5 {
    queue.async {
        print("任务 (i) 在线程: (Thread.current)")
    }
}

// 可能输出(线程会被复用):
// 任务1在线程: <NSThread: 0x...>{number = 4, name = (null)}
// 任务2在线程: <NSThread: 0x...>{number = 5, name = (null)}
// 任务3在线程: <NSThread: 0x...>{number = 4, name = (null)} // 线程复用!

重要特性

1. 线程复用

// GCD 自动复用线程,提高性能
// 不会为每个任务都创建新线程

2. 队列层级

// 主队列 - 主线程,UI更新
DispatchQueue.main.async {
    // 更新UI
}

// 全局队列 - 系统提供的并发队列
let globalQueue = DispatchQueue.global(qos: .background)

// 自定义队列
let customQueue = DispatchQueue(label: "custom")

3. 避免线程爆炸

// ❌ 错误:直接创建大量线程
for _ in 0...1000 {
    Thread {
        // 工作
    }.start()
}

// ✅ 正确:使用队列,系统自动管理
let queue = DispatchQueue.global()
for _ in 0...1000 {
    queue.async {
        // 工作 - 系统会合理分配线程
    }
}

最佳实践

1. 选择合适队列

// UI更新用主队列
DispatchQueue.main.async {
    // 更新UI
}

// 后台任务用全局队列
DispatchQueue.global(qos: .userInitiated).async {
    // 耗时任务
    DispatchQueue.main.async {
        // 完成后更新UI
    }
}

2. 避免阻塞主队列

// ❌ 错误:在主队列执行耗时操作
DispatchQueue.main.async {
    let data = processLargeData() // 阻塞UI
    updateUI(data)
}

// ✅ 正确:在后台处理
DispatchQueue.global(qos: .userInitiated).async {
    let data = processLargeData()
    DispatchQueue.main.async {
        updateUI(data)
    }
}

总结

DispatchQueue 是线程的智能调度器

  • 它 管理 任务,让开发者专注于"做什么"
  • 它 隐藏 线程细节,自动优化资源使用
  • 它 保证 任务按照指定顺序和方式执行

GCD 通过 DispatchQueue 将开发者从繁琐的线程管理中解放出来,让并发编程变得更简单、更高效、更安全。

👉 追问:为什么说 GCD 是“基于队列而不是线程”的并发模型?

说 GCD 是"基于队列而不是线程"的并发模型,核心在于它将并发抽象的重心从"谁执行"(线程)转移到了"什么被执行"(任务)以及"如何组织执行"(队列)。

核心思想对比

传统线程模型

// 关注的是"执行者"
let thread1 = Thread { /* 任务A */ }
let thread2 = Thread { /* 任务B */ }
thread1.start()
thread2.start()
// 你需要管理:创建线程、分配任务、协调线程、销毁线程

GCD 队列模型

// 关注的是"任务组织"
let queue = DispatchQueue(label: "work", attributes: .concurrent)
queue.async { /* 任务A */ }  // 我只管提交任务
queue.async { /* 任务B */ }  // 系统决定如何执行
// 你只需要:定义任务、选择队列、提交任务

为什么这个区别很重要?

1. 解耦任务与执行资源

// 传统线程:任务和线程强绑定
Thread {
    downloadImage()  // 任务绑定到这个特定线程
}

// GCD:任务和线程解耦
queue.async {
    downloadImage()  // 任务提交到队列,系统分配线程
}
// 同一个任务在不同时间可能由不同线程执行

2. 从"微观管理"到"宏观调度"

传统线程编程 GCD 队列编程
思考:需要多少线程? 思考:任务如何组织?
担心:线程创建/销毁开销 专注:任务依赖和顺序
操心:线程同步和通信 利用:队列的同步特性

3. 编程模型更直观

// 用队列表达执行顺序非常自然

// 串行执行:天然保证顺序
serialQueue.async { task1() }
serialQueue.async { task2() }  // 一定在 task1 之后

// 并发执行:简单明了
concurrentQueue.async { task1() }
concurrentQueue.async { task2() }  // 可能并行执行

// 依赖关系:清晰表达
queue.async {
    let data = fetchData()
    DispatchQueue.main.async {
        updateUI(with: data)
    }
}

实际体现

示例:对比两种模型的复杂性

// 传统线程方式实现三个任务的串行执行
class ThreadManager {
    var currentThread: Thread?
    
    func executeSequentially() {
        let thread1 = Thread {
            task1()
            // 需要手动协调下一个任务
            let thread2 = Thread {
                task2()
                let thread3 = Thread {
                    task3()
                }
                thread3.start()
            }
            thread2.start()
        }
        thread1.start()
    }
}

// GCD 方式实现三个任务的串行执行
let serialQueue = DispatchQueue(label: "serial")
serialQueue.async { task1() }
serialQueue.async { task2() }
serialQueue.async { task3() }
// 简洁明了,自动保证顺序

示例:避免"线程爆炸"

// 传统方式:容易创建过多线程
for i in 0..<1000 {
    Thread {
        processItem(i)
    }.start()  // 可能创建1000个线程!
}

// GCD 方式:系统智能管理
let queue = DispatchQueue.global()
for i in 0..<1000 {
    queue.async {
        processItem(i)  // 系统复用线程池中的线程
    }
}
// 可能只用 8-64 个线程(根据 CPU 核心数优化)

GCD 的哲学转变

1. 关注点分离

// 你关心的:
- 任务是什么?
- 任务间的依赖关系?
- 任务的优先级?
- 执行顺序要求?

// 系统关心的:
- 用多少线程?
- 哪个线程执行哪个任务?
- 何时创建/销毁线程?
- 如何负载均衡?

2. 更高级的抽象

// GCD 提供了高级原语
let group = DispatchGroup()  // 任务组
let semaphore = DispatchSemaphore(value: 1)  // 信号量
let barrier = DispatchWorkItem(flags: .barrier)  // 屏障

// 这些都在队列层面操作,不直接涉及线程

3. 性能优化透明化

// 系统可以根据情况优化:
// - 线程复用
// - 负载均衡
// - CPU 亲和性
// - 能耗优化(iOS 上特别重要)

// 你只需:queue.async { work }
// 系统决定:用哪个核、哪个线程、何时执行

现实类比

传统线程模型:自己建工厂

  • 你需要:招聘工人(创建线程)
  • 分配任务:A 你去拧螺丝,B 你去焊接
  • 协调管理:A 做完告诉 B
  • 成本高:工人闲置时也要付工资

GCD 队列模型:使用云服务平台

  • 你只需:提交任务需求单(任务到队列)
  • 平台负责:分配工人、调度任务、优化资源
  • 你只关心:任务描述和依赖关系
  • 成本优:按需使用,资源复用

总结

GCD 的"基于队列"模型之所以强大,是因为:

  1. 抽象层次更高:从"执行单元"抽象到"任务组织"
  2. 资源管理更优:系统全局优化,避免局部最优
  3. 编程模型更安全:减少了数据竞争和死锁的机会
  4. 性能更可预测:避免了线程爆炸和过度订阅
  5. 代码更简洁:关注业务逻辑,而不是线程管理

这种设计使得并发编程从一门"黑魔法"变成了更可控、更安全的工程实践。你不再直接指挥"士兵"(线程),而是制定"作战计划"(队列和任务),让"指挥部"(GCD)去最优执行。

❌
❌