最大层内元素和
方法一:深度优先搜索
我们可以采用深度优先搜索来遍历这棵二叉树,递归的同时记录当前的层号。
相比哈希表,这里我们采用效率更高的动态数组来维护每一层的元素之和,如果当前层号达到了数组的长度,则将节点元素添加到数组末尾,否则更新对应层号的元素之和。
然后遍历数组,找到元素之和最大,且层号最小的元素。
###Python
class Solution:
def maxLevelSum(self, root: Optional[TreeNode]) -> int:
sum = []
def dfs(node: TreeNode, level: int) -> None:
if level == len(sum):
sum.append(node.val)
else:
sum[level] += node.val
if node.left:
dfs(node.left, level + 1)
if node.right:
dfs(node.right, level + 1)
dfs(root, 0)
return sum.index(max(sum)) + 1 # 层号从 1 开始
###C++
class Solution {
vector<int> sum;
void dfs(TreeNode *node, int level) {
if (level == sum.size()) {
sum.push_back(node->val);
} else {
sum[level] += node->val;
}
if (node->left) {
dfs(node->left, level + 1);
}
if (node->right) {
dfs(node->right, level + 1);
}
}
public:
int maxLevelSum(TreeNode *root) {
dfs(root, 0);
int ans = 0;
for (int i = 0; i < sum.size(); ++i) {
if (sum[i] > sum[ans]) {
ans = i;
}
}
return ans + 1; // 层号从 1 开始
}
};
###Java
class Solution {
private List<Integer> sum = new ArrayList<Integer>();
public int maxLevelSum(TreeNode root) {
dfs(root, 0);
int ans = 0;
for (int i = 0; i < sum.size(); ++i) {
if (sum.get(i) > sum.get(ans)) {
ans = i;
}
}
return ans + 1; // 层号从 1 开始
}
private void dfs(TreeNode node, int level) {
if (level == sum.size()) {
sum.add(node.val);
} else {
sum.set(level, sum.get(level) + node.val);
}
if (node.left != null) {
dfs(node.left, level + 1);
}
if (node.right != null) {
dfs(node.right, level + 1);
}
}
}
###C#
public class Solution {
private IList<int> sum = new List<int>();
public int MaxLevelSum(TreeNode root) {
DFS(root, 0);
int ans = 0;
for (int i = 0; i < sum.Count; ++i) {
if (sum[i] > sum[ans]) {
ans = i;
}
}
return ans + 1; // 层号从 1 开始
}
private void DFS(TreeNode node, int level) {
if (level == sum.Count) {
sum.Add(node.val);
} else {
sum[level] += node.val;
}
if (node.left != null) {
DFS(node.left, level + 1);
}
if (node.right != null) {
DFS(node.right, level + 1);
}
}
}
###go
func maxLevelSum(root *TreeNode) (ans int) {
sum := []int{}
var dfs func(*TreeNode, int)
dfs = func(node *TreeNode, level int) {
if level == len(sum) {
sum = append(sum, node.Val)
} else {
sum[level] += node.Val
}
if node.Left != nil {
dfs(node.Left, level+1)
}
if node.Right != nil {
dfs(node.Right, level+1)
}
}
dfs(root, 0)
for i, s := range sum {
if s > sum[ans] {
ans = i
}
}
return ans + 1 // 层号从 1 开始
}
###C
#define MAX_NODE_SIZE 10000
void dfs(struct TreeNode *node, int level, int *sum, int *sumSize) {
if (level == *sumSize) {
sum[*sumSize] = node->val;
(*sumSize)++;
} else {
sum[level] += node->val;
}
if (node->left) {
dfs(node->left, level + 1, sum, sumSize);
}
if (node->right) {
dfs(node->right, level + 1, sum, sumSize);
}
}
int maxLevelSum(struct TreeNode* root) {
int *sum = (int *)malloc(sizeof(int) * MAX_NODE_SIZE);
int sumSize = 0;
dfs(root, 0, sum, &sumSize);
int ans = 0;
for (int i = 0; i < sumSize; ++i) {
if (sum[i] > sum[ans]) {
ans = i;
}
}
return ans + 1; // 层号从 1 开始
}
###JavaScript
var maxLevelSum = function(root) {
const sum = [];
const dfs = (node, level) => {
if (level === sum.length) {
sum.push(node.val);
} else {
sum.splice(level, 1, sum[level] + node.val);
}
if (node.left) {
dfs(node.left, level + 1);
}
if (node.right) {
dfs(node.right, level + 1);
}
}
dfs(root, 0);
let ans = 0;
for (let i = 0; i < sum.length; ++i) {
if (sum[i] > sum[ans]) {
ans = i;
}
}
return ans + 1; // 层号从 1 开始
};
###TypeScript
function maxLevelSum(root: TreeNode | null): number {
const sum: number[] = [];
const dfs = (node: TreeNode, level: number): void => {
if (level === sum.length) {
sum.push(node.val);
} else {
sum[level] += node.val;
}
if (node.left) {
dfs(node.left, level + 1);
}
if (node.right) {
dfs(node.right, level + 1);
}
};
if (root) {
dfs(root, 0);
}
let maxIndex = 0;
let maxSum = -Infinity;
for (let i = 0; i < sum.length; i++) {
if (sum[i] > maxSum) {
maxSum = sum[i];
maxIndex = i;
}
}
return maxIndex + 1; // 层号从 1 开始
};
###Rust
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
pub fn max_level_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
let mut sum = Vec::new();
// 使用 DFS 递归遍历
fn dfs(node: &Rc<RefCell<TreeNode>>, level: usize, sum: &mut Vec<i32>) {
let node_ref = node.borrow();
if level == sum.len() {
sum.push(node_ref.val);
} else {
sum[level] += node_ref.val;
}
if let Some(left) = &node_ref.left {
dfs(left, level + 1, sum);
}
if let Some(right) = &node_ref.right {
dfs(right, level + 1, sum);
}
}
if let Some(root_node) = root {
dfs(&root_node, 0, &mut sum);
}
// 找到最大和的层级
let mut max_index = 0;
let mut max_sum = i32::MIN;
for (i, &s) in sum.iter().enumerate() {
if s > max_sum {
max_sum = s;
max_index = i;
}
}
(max_index + 1) as i32 // 层号从 1 开始
}
}
复杂度分析
-
时间复杂度:$O(n)$,其中 $n$ 是二叉树的节点个数。
-
空间复杂度:$O(n)$。最坏情况下二叉树是一条链,需要 $O(n)$ 的数组空间以及 $O(n)$ 的递归栈空间。
方法二:广度优先搜索
由于计算的是每层的元素之和,用广度优先搜索来遍历这棵树会更加自然。
对于广度优先搜索,我们可以用队列来实现。初始时,队列只包含根节点;然后不断出队,将子节点入队,直到队列为空。
如果直接套用方法一的思路,我们需要在队列中存储节点和节点的层号。另一种做法是一次遍历完一整层的节点,遍历的同时,累加该层的节点的元素之和,同时用这层的节点得到下一层的节点,这种做法不需要记录层号。
为了代码实现的方便,我们可以使用两个动态数组,第一个数组 $q$ 为当前层的节点,第二个数组 $\textit{nq}$ 为下一层的节点。遍历 $q$ 中节点的同时,把子节点加到 $\textit{nq}$ 中。遍历完当前层后,将 $q$ 置为 $\textit{nq}$。
###Python
class Solution:
def maxLevelSum(self, root: Optional[TreeNode]) -> int:
ans, maxSum = 1, root.val
level, q = 1, [root]
while q:
sum, nq = 0, []
for node in q:
sum += node.val
if node.left:
nq.append(node.left)
if node.right:
nq.append(node.right)
if sum > maxSum:
ans, maxSum = level, sum
q = nq
level += 1
return ans
###C++
class Solution {
public:
int maxLevelSum(TreeNode *root) {
int ans = 1, maxSum = root->val;
vector<TreeNode*> q = {root};
for (int level = 1; !q.empty(); ++level) {
vector<TreeNode*> nq;
int sum = 0;
for (auto node : q) {
sum += node->val;
if (node->left) {
nq.emplace_back(node->left);
}
if (node->right) {
nq.emplace_back(node->right);
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
q = move(nq);
}
return ans;
}
};
###Java
class Solution {
public int maxLevelSum(TreeNode root) {
int ans = 1, maxSum = root.val;
List<TreeNode> q = new ArrayList<TreeNode>();
q.add(root);
for (int level = 1; !q.isEmpty(); ++level) {
List<TreeNode> nq = new ArrayList<TreeNode>();
int sum = 0;
for (TreeNode node : q) {
sum += node.val;
if (node.left != null) {
nq.add(node.left);
}
if (node.right != null) {
nq.add(node.right);
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
q = nq;
}
return ans;
}
}
###C#
public class Solution {
public int MaxLevelSum(TreeNode root) {
int ans = 1, maxSum = root.val;
IList<TreeNode> q = new List<TreeNode>();
q.Add(root);
for (int level = 1; q.Count > 0; ++level) {
IList<TreeNode> nq = new List<TreeNode>();
int sum = 0;
foreach (TreeNode node in q) {
sum += node.val;
if (node.left != null) {
nq.Add(node.left);
}
if (node.right != null) {
nq.Add(node.right);
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
q = nq;
}
return ans;
}
}
###go
func maxLevelSum(root *TreeNode) int {
ans, maxSum := 1, root.Val
q := []*TreeNode{root}
for level := 1; len(q) > 0; level++ {
tmp := q
q = nil
sum := 0
for _, node := range tmp {
sum += node.Val
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
if sum > maxSum {
ans, maxSum = level, sum
}
}
return ans
}
###C
#define MAX_NODE_SIZE 10000
int maxLevelSum(struct TreeNode* root){
int ans = 1, maxSum = root->val;
struct TreeNode **q = (struct TreeNode **)malloc(sizeof(struct TreeNode *) * MAX_NODE_SIZE);
struct TreeNode **nq = (struct TreeNode **)malloc(sizeof(struct TreeNode *) * MAX_NODE_SIZE);
int qSize = 0;
q[qSize++] = root;
for (int level = 1; qSize > 0; ++level) {
int sum = 0, nqSize = 0;
for (int i = 0; i < qSize; i++) {
sum += q[i]->val;
if (q[i]->left) {
nq[nqSize++] = q[i]->left;
}
if (q[i]->right) {
nq[nqSize++] = q[i]->right;
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
struct TreeNode *tmp = q;
q = nq;
nq = tmp;
qSize = nqSize;
}
free(q);
free(nq);
return ans;
}
###JavaScript
var maxLevelSum = function(root) {
let ans = 1, maxSum = root.val;
let q = [];
q.push(root);
for (let level = 1; q.length > 0; ++level) {
const nq = [];
let sum = 0;
for (const node of q) {
sum += node.val;
if (node.left) {
nq.push(node.left);
}
if (node.right) {
nq.push(node.right);
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
q = nq;
}
return ans;
};
###TypeScript
function maxLevelSum(root: TreeNode | null): number {
if (!root) {
return 1;
}
let ans = 1;
let maxSum = root.val;
let q: TreeNode[] = [root];
for (let level = 1; q.length > 0; level++) {
const nq: TreeNode[] = [];
let sum = 0;
for (const node of q) {
sum += node.val;
if (node.left) {
nq.push(node.left);
}
if (node.right) {
nq.push(node.right);
}
}
if (sum > maxSum) {
maxSum = sum;
ans = level;
}
q = nq;
}
return ans;
}
###Rust
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::VecDeque;
impl Solution {
pub fn max_level_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
let mut ans = 1;
let mut max_sum = i32::MIN;
let mut level = 1;
let mut queue = VecDeque::new();
if let Some(root_node) = root {
queue.push_back(root_node);
}
while !queue.is_empty() {
let level_size = queue.len();
let mut sum = 0;
for _ in 0..level_size {
let node = queue.pop_front().unwrap();
let node_ref = node.borrow();
sum += node_ref.val;
if let Some(left) = &node_ref.left {
queue.push_back(left.clone());
}
if let Some(right) = &node_ref.right {
queue.push_back(right.clone());
}
}
if sum > max_sum {
max_sum = sum;
ans = level;
}
level += 1;
}
ans
}
}
复杂度分析
-
时间复杂度:$O(n)$,其中 $n$ 是二叉树的节点个数。
-
空间复杂度:$O(n)$。最坏情况下,数组中有 $O(n)$ 个节点。