普通视图

发现新文章,点击刷新页面。
今天 — 2025年10月14日首页

VChart 官网上线 智能助手与分享功能

作者 玄魂
2025年10月13日 20:27

1 🚀 VChart 官网全新分享功能上线,让你的图表“活”起来!

还在为如何分享和展示你的数据可视化作品而烦恼吗?现在,VChart 为您带来一系列强大的分享功能,让您的图表以前所未有的方式“活”起来,轻松嵌入任何应用场景!

该功能有助于您持久化图表案例,快速创建demo与他人进行分享讨论,也可以用来嵌入在其他web 应用中。


1.1 ✨ 分享功能入口

  1. 进入visactor.io/vchartvisactor.com/vchart)官网
  2. Playground页面任一图表Demo 页面
  3. 点击右上角的分享按钮

1.2 ✨ 核心功能说明

全新的分享功能全面支持 原生 JavaScript、 React 和 OpenInula 三大主流环境,确保您的图表Spec在任何环境都能完美呈现!

1.2.1 分享为 Playground:实时互动,即时调试

一键将您的图表配置分享为一个独立的 Playground 链接。您的同事或合作伙伴无需任何本地配置,即可在浏览器中直接查看、修改和调试图表,更可以用来和官方反馈问题,github 提issue时使用。

  • 跨环境支持:在原生、React 和 OpenInula 环境中无缝切换。
  • 配置继承:自动继承您当前使用的 VChart 版本和主题,保证环境一致性。
  • 效果演示:

2. 分享为 iframe:轻松嵌入,无缝集成

需要将图表嵌入到您的网站、博客或内部系统中?现在,只需复制一行 iframe 代码,即可将动态图表无缝集成到任何网页中。

  • 全环境覆盖:同样支持原生、React 和 OpenInula。
  • 版本与主题:自动同步 VChart 版本和主题,与您的应用风格保持一致。
  • 效果演示:
3. 分享为图片:一键截图,快速分享

需要将图表用于报告、演示文稿或社交媒体?全新的“分享为图片”功能,让您一键生成高清图表图片,随时随地分享您的数据洞察。

  • 简单快捷:在原生环境下,一键生成并下载图表图片。
  • 效果演示:

2 🚀 AI 智能助手,让图表编辑更“智能”

VChart 中的 AI 智能助手为图表编辑带来了更多便利与智能体验。一方面,其搜索框集成了 AI 助手,能帮助用户快速查找所需信息,大大提高信息检索效率,减少搜索时间成本 。另一方面,针对 AI 编辑功能,进行了 UI 优化,采用抽屉式交互,这种改进为用户营造了更流畅、更沉浸的编辑环境,减少外界干扰,让用户能够更专注于图表编辑。


2.1 ✨ 搜索框新增 AI 助手

VChart 的搜索框现已集成强大的 AI 助手,助您快速查找所需信息。

通过搜索框打开ai助手

输入问题获取答案:

2.2 ✨ AI 编辑功能 UI 优化

我们对 AI 编辑功能进行了 UI 优化,现已改为抽屉式交互,为您提供更流畅、更沉浸的编辑体验。

3 🚀 立即体验

访问 VChart 官网,立即体验吧!

这只是我们通过 AI 来提升用户体验的一小步,后面还有更多的大的动作,欢迎关注我们,进行交流和建议!

欢迎交流

最后,我们诚挚的欢迎所有对数据可视化感兴趣的朋友参与进来,参与 VisActor 的开源建设:

VChartVChart 官网VChart Github(欢迎 Star)

VTableVTable 官网VTable Github(欢迎 Star)

VMindVMind 官网VMind Github(欢迎 Star)

官方网站:www.visactor.io/www.viactor.com

Discord:discord.gg/3wPyxVyH6m

飞书群(外网):打开链接扫码

微信公众号:打开链接扫码

github:github.com/VisActor

昨天以前首页

BaikalDB MCP Server :链接数据库和AI的直通桥

作者 百度Geek说
2025年9月23日 14:32

导读

BaikalDB作为服务百度商业产品的分布式存储系统,支撑了整个广告库海量物料的存储。在大语言模型LLM蓬勃发展的现在,想在大模型里使用BaikalDB里的数据进行分析,都需要复杂的定制开发。看BaikalDB如何借助模型上下文协议(MCP),让数据库对话像聊天一样简单——无需编写代码,大语言模型即可完成复杂数据分析。

01 引言

在2025年以前,大语言模型(Large Language Model‌,LLM)想要使用数据库的数据,都需要开发人员设计接口、开发Agent插件、构建Prompt等费时费力的一系列定制开发;同时面对不同大模型的差异,还需要额外的重复性工作进行适配。

随着模型上下文协议(Model Context Protocol,MCP)的标准化普及,这一局面被彻底重构。MCP通过定义统一的上下文交互规范,为应用程序与AI模型建立了 “通用通信协议”。

基于此,BaikalDB团队创新推出‌BaikalDB MCP Server‌,将其打造为连接LLM与分布式存储系统的 “智能USB接口” ——该方案具备三大核心价值:

1. 零开发集成‌:支持主流LLM通过标准化协议直接访问BaikalDB,无需编写任何适配代码。

2. 全链路自动化‌:从自然语言意图理解、SQL智能生成到查询执行与数据分析,实现端到端闭环。

3. 多模型兼容性‌:屏蔽底层技术差异,一套接口适配GPT、Claude、文心一言等各类大模型。

02 MCP: AI USB接口

2024年11月由Anthropic公司提出的模型上下文协议MCP,是一种标准化的大模型与外部数据源、工具交互的开放协议。来源于USB接口范式的设计灵感,MCP的核心思想在于:通过创建一个通用的标准(如USB接口设计),解决大语言模型与外部系统间的“信息孤岛” 问题,该协议通过三大核心原则重构AI开发生态:

1. 即插即用标准化:定义统一的上下文交换格式,使大模型与数据源/工具的对接效率提升80%以上。

2. 组件解耦化:支持不同AI模块的热插拔组合,开发者可像搭积木般构建复杂AI系统。

3. 语义透明化:通过标准化上下文标记,实现跨组件意图传递的零损耗。

图片

△MCP设计理念

2.1 MCP 组成

如上图所示,MCP 由三个核心组件构成:MCP Host、MCP Client 和 MCP Server:

图片

官方文档链接:

modelcontextprotocol.io/clients

modelcontextprotocol.io/quickstart/…

modelcontextprotocol.io/quickstart/…

github.com/modelcontex…

MCP Server的三类能力

  • 工具类(Tools)——  模型的「智能外设」

     供模型调用的函数或服务,用于执行特定任务。如一个天气查询工具,获取指定城市的天气信息。

  • 资源类(Resources)——模型的「知识库」

     供模型读取的数据源,如文件数据或 API 响应内容,为模型提供了丰富的上下文信息,增强了模型的理解能力。

  • 提示词(Prompts)——模型的「操作指南」

     预先编写的模板,旨在帮助用户完成特定的任务,通常是为了优化工具或资源的使用,提供一种更高效、更准确的交互方式。

MCP Client和Server之间的三种通讯方式

  • STDIO 传输

     MCP Server运行在本地。

     通过标准输入(stdin)和标准输出(stdout)建立双向通信,1对1服务。

  • SSE 传输

     MCP Server运行在本地或远程运行。

     通过服务器发送事件协议(SSE)进行通信,支持N对1服务。

     在 2024-11-05 版本废弃,被 Streamable HTTP 替代,后者将 SSE 作为可选的流式传输机制纳入其中。

  • Streamable HTTP 传输

     MCP Server运行在本地或远程运行。

     通过可流式HTTP传输协议通信,支持N对1服务。

     支持流式传输,适合大数据量场景,提供更灵活的传输能力

2.2 MCP 流程

文心快码Comate是百度基于文心大模型开发的智能代码助手,旨在通过AI技术重构编程流程,提升开发效率与代码质量。目前Comate不仅支持‌‌智能代码生成‌、单元测试生成等功能,还支持接入外部MCP Server与大模型进行交互。

以在文心快码Comate里通过BaikalDB MCP Server对BaikalDB数据进行查询分析举例:

图片

1. MCP Host:Comate Desktop 作为 Host,负责接收提问【分析42601969用户在 2023-3月每天的转化总数,按照时间升序排序,用折线图展示,并分析趋势走向 】并与大模型交互。大模型解析提问,并生成对应的SQL。

2. MCP Client:当大模型决定需要baikaldb_mcp/read_query Tool,Comate 中内置的 MCP Client 会被激活。这个Client负责与BaikalDB MCP Server建立链接并调用read_query工具。

3. MCP Server:BaikalDB MCP Server被调用,接收、执行查询语句,最终返回SQL执行结果。

完整执行流程:你的问题 → Comate Desktop → 大模型 → 需要查询BaikalDB表,并生成对应SQL → MCP Client 连接 → BaikalDB MCP Server → 执行SQL并返回结果 → Comate生成回答 → 生成折线图。

MCP架构设计使得如Comate等LLM应用,可以在不同场景下灵活调用各种工具和数据源,而开发者只需专注于开发对应的 MCP Server,无需关心 Host 和 Client 的实现细节。

03 BaikalDB MCP Server

3.1 BaikalDB MCP Server主要功能

BaikalDB MCP Server提供了以下功能,支持大模型直接和BaikalDB数据库进行交互:

1. 工具类(Tools):大模型可以根据上下文按需调取的直接和BaikalDB交互的工具。

  • 链接操作:链接到指定的BaikalDB库

     connect_baikaldb:给定链接信息(包括host,port,username,password,database),连接到对应的BaikalDB数据库,使用过程中支持动态切换不同的BaikalDB集群。

  • 查询操作:包括获取库表信息,执行SELECT/DML SQL,分析SQL索引使用扫描量等。

     show_all_databases:获取所有的数据库列表信息。

     db_overview:获取指定数据库中所有表的概览信息。

     table_overview:获取指定表的概览信息,包括:表结构(show create table)、表示例数据(select * from table limit 3)。

     read_query:执行select sql并返回csv结果数据,大模型拿到结果可以进行智能分析、智能绘图等等。

     write_query:执行建删表、插入删除变更等dml sql并返回操作结果。

     analyze_select_query:分析查询SQL执行情况:使用的索引,索引扫描/过滤/反查行数等,支持大模型进行索引分析推荐。

  • 模板操作(优化复杂场景使用):支持预先导入模板SQL(如百度智能云推出的Sugar BI SQL模板),帮助大模型理解业务逻辑,后续大模型可在模板SQL基础上改写查询分析,并支持基于模板进行二次查询(如再次聚合),不同BaikalDB用户之间模板不共享。

     get_all_bi_sql_template_list:查询当前BaikalDB用户已导入的SQL模板列表。

     get_bi_sql_template_detail:获取SQL模板详细信息,包括SQL模板,相关表Schema等。

     add_bi_sql_template:指定模板说明,模板SQL等,添加新的SQL模板。

     delete_bi_sql_template:删除指定的SQL模板。

2. 资源类 (Resources) 和 提示词 (Prompts):

  • 目前BaikalDB MCP Server暂未定义资源和提示词,未来会根据使用场景灵活添加,以更好的引导大模型和BaikalDB进行交互。

通过以上工具,BaikalDB MCP Server使得大模型能自主的查询/操作数据库,进行多轮数据智能分析,并且可以结合大模型和其他MCP能力,并高效的通过多种形式呈现分析结果(如Excel文本,绘制图表等)。

3.2 BaikalDB MCP Server应用场景

BaikalDB MCP Server拥有以上能力后,就可以在以下场景中进行使用:

1. 实时数据分析和智能报表

  • 大模型可以实时查询BaikalDB的业务数据,生成可视化报表,并可结合历史上下文生成分析报告或者建议。

2. 多数据源联邦查询分析

  • 通过MCP支持大模型同时访问BaikalDB和其他数据源(如知识库、Mysql等),实现联邦分析。

3. 开发测试提效

  • 在开发测试过程中,通过自然语言交互,建删改表、增删改查、构造测试数据、分析SQL执行情况等,不用额外切多个窗口执行SQL操作。

04 BaikalDB MCP Server使用

BaikalDB MCP Server使得BaikalDB不单是个高性能的分布式数据库,还是大模型的分析执行插件,使得用户不再需要任何开发,即可对BaikalDB存储的数据进行智能分析。

4.1 Comate 配置

以Comate举例:按照以下图示步骤,将BaikalDB MCP Server json配置添加到Comate MCP配置文件中,即可以在Comate中使用大模型操作BaikalDB数据库。当然后续我们会尝试将BaikalDB MCP Server发布到MCP仓库,使得配置更简单!

图片

图片

图片

BaikalDB MCP Server Json配置如下:

{  
    "mcpServers":  {
        "baikaldb_mcp": {
            "transport": "sse/streamableHttp",
            "url": "BaikalDB MCP Server URL",
            "headers": {},
            "timeout": 50
          }
     }
}

4.2 Demo 演示

示例1:智能分析

下方视频展示了,在Comate中用自然语言对数据库数据进行智能分析和图表展示。 mpvideo.qpic.cn/0bc34mc4gaa…

示例2:开发测试提效

下方视频展示了,开发测试过程中的智能建表、导数、SQL执行分析、索引推荐等。 mpvideo.qpic.cn/0b2eiaadqaa…

示例3:基于模板智能分析

下方视频展示了,在复杂业务场景中,通过预先导入的BI SQL模板进行更高效准确的智能分析。 mpvideo.qpic.cn/0bc3omc24aa…

05 总结

BaikalDB MCP Server的核心价值在于打破了数据库数据的信息壁垒,构建了一条完整的智能数据处理链路,实现了从自然语言解析到业务建议输出的端到端能力:‌

  • 自然语言理解:将非结构化查询转化为结构化意图。

  • 数据库操作:自动生成并执行SQL语句。

  • 数据分析:对查询结果进行多维解读并生成可执行建议。

但是也存在一些问题:‌

  • SQL生成准确性高度依赖元数据质量(如表结构、字段注释)。

  • 复杂业务逻辑描述困难。

  • 大模型在长上下文中的注意力分配问题。

当然,随着大模型推理能力的持续提升和MCP协议生态的完善,这种数据智能范式将在金融风控、供应链优化、智能客服等复杂业务场景中展现出更大的价值潜力。

❌
❌