[Python3/Java/C++/Go/TypeScript] 一题一解:贪心 + 排序(清晰题解)
2025年12月25日 07:33
方法一:贪心 + 排序
为了使得幸福值之和尽可能大,我们应该优先选择幸福值大的孩子。因此,我们可以对孩子按照幸福值从大到小排序,然后依次选择 $k$ 个孩子。对于当前第 $i$ 个孩子,能够得到的幸福值为 $\max(\textit{happiness}[i] - i, 0)$,最后返回这 $k$ 个孩子的幸福值之和。
###python
class Solution:
def maximumHappinessSum(self, happiness: List[int], k: int) -> int:
happiness.sort(reverse=True)
ans = 0
for i, x in enumerate(happiness[:k]):
x -= i
ans += max(x, 0)
return ans
###java
class Solution {
public long maximumHappinessSum(int[] happiness, int k) {
Arrays.sort(happiness);
long ans = 0;
for (int i = 0, n = happiness.length; i < k; ++i) {
int x = happiness[n - i - 1] - i;
ans += Math.max(x, 0);
}
return ans;
}
}
###cpp
class Solution {
public:
long long maximumHappinessSum(vector<int>& happiness, int k) {
sort(happiness.rbegin(), happiness.rend());
long long ans = 0;
for (int i = 0, n = happiness.size(); i < k; ++i) {
int x = happiness[i] - i;
ans += max(x, 0);
}
return ans;
}
};
###go
func maximumHappinessSum(happiness []int, k int) (ans int64) {
sort.Ints(happiness)
for i := 0; i < k; i++ {
x := happiness[len(happiness)-i-1] - i
ans += int64(max(x, 0))
}
return
}
###ts
function maximumHappinessSum(happiness: number[], k: number): number {
happiness.sort((a, b) => b - a);
let ans = 0;
for (let i = 0; i < k; ++i) {
const x = happiness[i] - i;
ans += Math.max(x, 0);
}
return ans;
}
###rust
impl Solution {
pub fn maximum_happiness_sum(mut happiness: Vec<i32>, k: i32) -> i64 {
happiness.sort_unstable_by(|a, b| b.cmp(a));
let mut ans: i64 = 0;
for i in 0..(k as usize) {
let x = happiness[i] as i64 - i as i64;
if x > 0 {
ans += x;
}
}
ans
}
}
###cs
public class Solution {
public long MaximumHappinessSum(int[] happiness, int k) {
Array.Sort(happiness, (a, b) => b.CompareTo(a));
long ans = 0;
for (int i = 0; i < k; i++) {
int x = happiness[i] - i;
if (x <= 0) {
break;
}
ans += x;
}
return ans;
}
}
时间复杂度 $O(n \times \log n + k)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组 $\textit{happiness}$ 的长度。
有任何问题,欢迎评论区交流,欢迎评论区提供其它解题思路(代码),也可以点个赞支持一下作者哈 😄~