普通视图

发现新文章,点击刷新页面。
昨天以前唐巧的博客

CSPJ 教学思考:并查集

作者 唐巧
2025年2月9日 21:20

并查集在引入之前,需要先教会学生集合的概念。

集合

集合是数学中的一个基本概念,它是由一些确定的、彼此不同的对象所组成的整体。集合有两个特点:

  • 集合中的元素是互不相同的。
  • 集合中的元素没有顺序之分。比如集合 {1, 2, 3} 和 {3, 2, 1} 是同一个集合。

生活中的集合有很多,比如:班级,家庭成员,朋友等等。所以,学生还是比较容易理解的。

并查集

并查集是一种用于管理元素所属集合的数据结构,实现为一个森林,其中每棵树表示一个集合,树中的节点表示对应集合中的元素。

并查集支持两种操作:

  • 查询(Find):查询某个元素所属集合(查询对应的树的根节点),这可以用于判断两个元素是否属于同一集合
  • 合并(Merge):合并两个元素所属集合(合并对应的树)

在教学并查集的时候,画示意图可以很好地让学生理解并查集的操作。

并查集的初始化

我们用数组来表示并查集,用数组的值表示当前结点的父亲。如下图所示:

所以,初始化的代码如下:

1
2
3
4
5
6
7
8
#define MAXN 1010

int p[MAXN], n;
void init() {
for (int i = 0; i <= n ; ++i) {
p[i] = i;
}
}

并查集的查询操作

并查集在查询时,从初始结点开始,判断自己是不是根结点。根结点的特征是自己是自己的父亲。如果自己不是根结点,则继续递归往上找。示例代码如下:

1
2
3
4
int find(int a) {
if (p[a] == a) return a;
return find(p[a]);
}

我们在这儿,也顺便引入路径压缩的优化,告诉学生在返回值的时候,如果更新结点,就可以把下图中的长路径“拍扁”,使得下次查询的时候速度更快。

那么如何更新呢?只需要在上面的代码基础上做一点点改动,如下:

1
2
3
4
int find(int a) {
if (p[a] == a) return a;
return p[a] = find(p[a]); // 在返回值之前,更新结点值
}

以上代码可以简化成一行:return p[a]==a ? a : (p[a] = find(p[a]));。但是教学的时候,还是展开让学生理解清楚后,再提供简化的写法比较好。

并查集的合并操作

合并的时候,像上图那样,我们把一个结点的根结点的父亲,指向另外一个根结点即可。

1
2
3
4
5
void merge(int a, int b) {
int pa = find(a);
int pb = find(b);
p[pa] = pb;
}

以上代码可以简化成一行:p[find(a)]=find(b);。但是教学的时候,还是展开让学生理解清楚后,再提供简化的写法比较好。

判断并查集中集合的个数

因为有一个根结点,就代表有一个集合,所以我们可以数根结点的个数来得到集合的个数。

根结点的特点是:它的父结点就是自己。相关代码如下:

1
2
3
4
5
6
int cnt = 0;
for (int i = 1; i <=n; ++i) {
if (p[i] == i) {
cnt++;
}
}

并查集的练习题

完成以上的基础教学,就可以练习了。并查集的考查主要就是两个:

  • 判断两点是否联通
  • 计算连通块(集合)的个数

以下是基础的练习题目。

题目 说明
P1551 亲戚 基础题
P1536 村村通 基础题
P1892 团伙 提高题,需要用反集
P3144 Closing the Farm S USACO 16 OPEN
P1197 星球大战 JSOI 2008
P2024 食物链 NOI 2001
P1196 银河英雄传说 NOI 2002

反集

当题目中引入了敌人关系,并且定义:“敌人的敌人是朋友”的时候,就可以用反集来求解了。

反集专门用于表示敌对关系,并且敌人的敌人是朋友。反集的思路是再构造一个集合(称之为反集),然后将“敌人”关系通过原集和反集表示出来。

我们看个例子:

比如假设有 3 个元素,1, 2, 3。我们称他们的反集元素分别为 1' , 2', 3'; 分别表示 1, 2, 3 的敌人。

这个时候,如果 1 和 2 是敌人,则:

  • 因为 1' 也是 1 的敌人, 所以 1' 和 2 是朋友
  • 因为 2' 也是 2 的敌人, 所以 2' 也是 1 的朋友

结果表示如下:

这个时候,如果 2 和 3 是敌人,则

  • 2 和 3` 是朋友
  • 3 和 2` 是朋友

结果表示如下:

我们可以看到,在这种操作下,1 和 3 自然就在一个集合中了(成为朋友了)。

以上逻辑在并查集中如何实现呢?我们将并查集的下标扩展一倍,用 n+1 ~ 2n 来表示反集元素。其中,元素 a 的反集是 a+n。

这个时候,如果 a 与 b 是敌人,则需要在并查集中做如下操作:

  • 因为 a 与 b 是敌人,所以 a 与 b+n 就是朋友,需要 merge(a, b+n);
  • 因为 a 与 b 是敌人,所以 b 与 a+n 就是朋友,需要 merge(b, a+n);

P1892 团伙 是反集的典型例题,可以拿此题练习。

需要特别注意的是,因为此题需要判断集合数量,所以需要让 1~n 的元素当根结点,涉及合并操作的时候,不要让 1~n 的元素当反集元素的孩子。关健代码如下:

1
2
3
4
5
6
void merge(int a, int b) {
int fa = find(a);
int fb = find(b);
// b 有可能是反集,所以始终让 fb 在合并的时候当子结点
p[fb] = fa;
}

P1892 团伙 的完整参考代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <bits/stdc++.h>
using namespace std;

int p[2010], n, m;

int find(int a) {
if (p[a] == a) return a;
return p[a] = find(p[a]);
}

void merge(int a, int b) {
int fa = find(a);
int fb = find(b);
// b 有可能是反集,所以始终让 fb 在合并的时候当子结点
p[fb] = fa;
}

int main() {
for (int i = 0; i < 2010; ++i) {
p[i] = i;
}
scanf("%d%d", &n, &m);
for (int i = 0; i < m; ++i) {
char ch[3];
int a, b;
scanf("%s%d%d", ch, &a, &b);
if (ch[0] == 'F') {
merge(a, b);
} else {
merge(a, b+n);
merge(b, a+n);
}
}
int cnt = 0;
for (int i = 1; i <=n; ++i) {
if (p[i] == i) {
cnt++;
}
}
printf("%d\n", cnt);

return 0;
}

练习题参考代码

P1551 亲戚

标准的并查集,没有陷阱。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Author: Tang Qiao
*/
#include <bits/stdc++.h>
using namespace std;

int n,m,q;
int p[5010];

int find(int a) {
if (p[a] == a) return a;
return p[a] = find(p[a]);
}

void merge(int a, int b) {
int pa = find(a);
int pb = find(b);
p[pa] = pb;
}

int main() {
int a, b;
// 初始化
for (int i = 0; i < 5010; ++i) {
p[i] = i;
}
scanf("%d%d%d", &n, &m, &q);
for (int i = 0; i < m; ++i) {
scanf("%d%d", &a, &b);
merge(a, b);
}
for (int i = 0; i < q; ++i) {
scanf("%d%d", &a, &b);
if (find(a) == find(b)) printf("Yes\n");
else printf("No\n");
}
return 0;
}

P1536 村村通

用并查集操作,然后数一下一共有多少个不同的集合,答案就是 集合数-1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* Author: Tang Qiao
*/
#include <bits/stdc++.h>
using namespace std;

int p[1010], n, m;

int find(int a) {
if (p[a] == a) return a;
return p[a] = find(p[a]);
}

void merge(int a, int b) {
int pa = find(a);
int pb = find(b);
p[pa] = pb;
}

void init() {
for (int i = 0; i <= n ; ++i) {
p[i] = i;
}
}

int main() {
while (1) {
scanf("%d", &n);
if (n == 0) break;
init();
scanf("%d", &m);
for (int i = 0; i < m; ++i) {
int a, b;
scanf("%d%d", &a, &b);
merge(a, b);
}
int cnt = 0;
for (int i = 1; i <=n ; ++i) {
int pa = find(i);
if (pa == i) {
cnt++;
}
}
printf("%d\n", cnt-1);
}
return 0;
}

更多

并查集还有更多的优化,比如在合并的时候,把高度小的树往高度大的树上合并,以尽可能减少树的高度,这样可以使得未来查询的时候效率更高。因为大多时候用不上,所以这些知识可以放在课后阅读中让学生自行掌握。

参考文档

❌
❌