阅读视图

发现新文章,点击刷新页面。

Pagefind:为静态网站打造的极速搜索方案

Pagefind 是一个专为静态网站设计的开源搜索引擎,它能够自动索引你的网站并提供完全离线的搜索体验。

核心特性

  • 按需加载:只下载搜索相关的内容片段,而不是整个索引
  • 轻量级:核心 JS 仅约 20KB,索引文件高度压缩(相比 Lunr.js 减少 85%)
  • 零配置:自动识别内容,开箱即用
  • 多语言支持:内置中文、日文等多语言分词器
  • 完全静态:无需服务器端支持,支持完全离线

快速上手

三步启用搜索

# 1. 构建你的静态网站
npm run build

# 2. 生成搜索索引
npx pagefind --source "dist"

# 3. 在 HTML 中添加搜索界面
<link href="/pagefind/pagefind-ui.css" rel="stylesheet">
<div id="search"></div>
<script src="/pagefind/pagefind-ui.js"></script>
<script>
    new PagefindUI({ element: "#search" });
</script>

Pagefind 会自动在 dist/pagefind/ 目录下生成索引文件。

核心用法

控制索引范围

使用 data-pagefind-body 标记要索引的内容:

<main data-pagefind-body>
    <h1>文章标题</h1>
    <p>这部分内容会被索引</p>
</main>

<!-- 使用 data-pagefind-ignore 排除特定内容 -->
<div data-pagefind-ignore>
    <h2>评论</h2>
    <div class="comments">...</div>
</div>

添加元数据和权重

<!-- 自定义元数据 -->
<article data-pagefind-body
         data-pagefind-meta="author:张三,date:2024-01-01">
    <h1 data-pagefind-weight="10">文章标题</h1>
    <p data-pagefind-weight="5">摘要内容...</p>
    <div>正文内容...</div>
</article>

配置文件

# pagefind.yml
source: "dist"
exclude_selectors:
  - "nav"
  - ".sidebar"
force_language: "zh-cn"

自定义搜索 UI

import * as pagefind from '/pagefind/pagefind.js';

const search = await pagefind.search("React");
const results = await Promise.all(
    search.results.map(r => r.data())
);

实战指南

集成到构建流程

{
  "scripts": {
    "build": "vite build",
    "postbuild": "pagefind --source dist"
  }
}

React 自定义搜索组件

import { useState } from 'react';

function Search() {
    const [results, setResults] = useState([]);

    const handleSearch = async (e) => {
        const { default: pagefind } = await import('/pagefind/pagefind.js');
        const search = await pagefind.search(e.target.value);
        const data = await Promise.all(
            search.results.slice(0, 5).map(r => r.data())
        );
        setResults(data);
    };

    return (
        <>
            <input type="search" onChange={handleSearch} />
            {results.map((r, i) => (
                <a key={i} href={r.url}>
                    <h3>{r.meta.title}</h3>
                    <p dangerouslySetInnerHTML={{ __html: r.excerpt }} />
                </a>
            ))}
        </>
    );
}

最佳实践

1. 只索引主要内容

<!-- ✅ 推荐 -->
<main data-pagefind-body>
    <article>...</article>
</main>

2. 使用权重优化结果

<h1 data-pagefind-weight="10">标题</h1>
<p data-pagefind-weight="5">摘要</p>

3. CLI 参数配置

# 排除选择器
pagefind --source "dist" --exclude-selectors "nav" --exclude-selectors "footer"

# 强制语言
pagefind --source "dist" --force-language "zh-cn"

配置参考

HTML 属性

属性 说明
data-pagefind-body 标记要索引的主要内容区域
data-pagefind-ignore 排除该元素及其子元素
data-pagefind-meta 添加自定义元数据
data-pagefind-filter 定义可过滤的字段
data-pagefind-sort 定义可排序的字段
data-pagefind-weight 设置内容权重(1-10)

JavaScript API

// 高级搜索
const search = await pagefind.search("React", {
  filters: { category: "tutorial" },
  sort: { date: "desc" },
  limit: 10
});

// 获取结果
const results = await Promise.all(
  search.results.map(r => r.data())
);

原理深度解析

整体架构

首先通过架构图了解 Pagefind 的整体设计:

graph TB
    subgraph "构建阶段 Build Time"
        A[HTML 文件] --> B[内容扫描器]
        B --> C[内容提取器]
        C --> D[多语言分词器]
        D --> E[倒排索引构建器]
        E --> F[索引分片器]
        F --> G[压缩引擎]
        G --> H[索引文件]
    end

    subgraph "运行阶段 Runtime"
        I[用户查询] --> J[查询分词]
        J --> K[哈希计算]
        K --> L[按需加载器]
        H --> L
        L --> M[索引查询]
        M --> N[TF-IDF 评分]
        N --> O[结果排序]
        O --> P[内容片段加载]
        P --> Q[摘要生成]
        Q --> R[搜索结果]
    end

    subgraph "缓存层 Cache Layer"
        S[浏览器缓存]
        T[内存缓存]
        L -.-> S
        L -.-> T
    end

    style A fill:#e1f5ff
    style H fill:#e1f5ff
    style I fill:#fff3e0
    style R fill:#fff3e0

索引构建过程

Pagefind 的工作流程可以分为两个阶段:构建时索引运行时搜索

1. 构建时索引(Build Time)

当你运行 pagefind --source "dist" 时,Pagefind 会执行以下步骤:

flowchart TD
    Start([开始构建]) --> Scan[扫描 HTML 文件]
    Scan --> Parse[解析 HTML DOM]
    Parse --> Extract[提取内容]

    Extract --> CheckBody{检查 data-pagefind-body}
    CheckBody -->|找到| UseBody[使用标记的内容]
    CheckBody -->|未找到| UseDefault[使用 body 全部内容]

    UseBody --> Filter[应用排除规则]
    UseDefault --> Filter

    Filter --> Meta[提取元数据]
    Meta --> Tokenize[文本分词]

    Tokenize --> CheckLang{检测语言}
    CheckLang -->|英文| EnTokenizer[英文分词器]
    CheckLang -->|中文| ZhTokenizer[中文分词器 n-gram]
    CheckLang -->|其他| OtherTokenizer[对应语言分词器]

    EnTokenizer --> BuildIndex[构建倒排索引]
    ZhTokenizer --> BuildIndex
    OtherTokenizer --> BuildIndex

    BuildIndex --> CalcWeight[计算词条权重]
    CalcWeight --> Shard[索引分片 256个桶]

    Shard --> Compress[压缩处理]
    Compress --> GenFragment[生成内容片段]
    GenFragment --> WriteFiles[写入文件]

    WriteFiles --> Output[输出到 pagefind/]
    Output --> End([构建完成])

    style Start fill:#90EE90
    style End fill:#FFB6C1
    style BuildIndex fill:#FFE4B5
    style Compress fill:#E0FFFF

关键技术点:

  • 倒排索引:对于每个词条,记录它出现在哪些文档的哪些位置
  • 分片存储:将索引拆分成小块,按需加载(使用一致性哈希算法分配到 256 个桶)
  • 压缩算法:使用高效的压缩减少文件大小

索引结构详解:

pagefind/
├── pagefind.js           # 核心搜索引擎(~20KB)# - 包含哈希函数# - 索引加载器# - 搜索算法
│
├── pagefind-ui.js        # UI 组件(~15KB)
├── pagefind-ui.css       # 样式文件(~3KB)
│
├── index/                # 索引分片(256 个)
│   ├── index_00.pf       # 哈希值 0x00-0x00
│   ├── index_01.pf       # 哈希值 0x01-0x01
│   ├── ...
│   └── index_ff.pf       # 哈希值 0xFF-0xFF
│
├── fragment/             # 内容片段
│   ├── en_<hash>.pf      # 英文页面片段
│   ├── zh_<hash>.pf      # 中文页面片段
│   └── ...
│
└── filter/               # 过滤器数据(如果使用)
    ├── category.pf
    └── tags.pf

2. 运行时搜索(Runtime)

当用户输入搜索查询时的完整时序:

sequenceDiagram
    actor User as 用户
    participant UI as 搜索界面
    participant Core as Pagefind 核心
    participant Cache as 浏览器缓存
    participant Server as 静态服务器

    User->>UI: 输入 "React 教程"
    UI->>UI: 防抖延迟 (300ms)

    UI->>Core: search("React 教程")
    Core->>Core: 分词 ["React", "教程"]

    par 并行计算哈希
        Core->>Core: hash("React") = 0x42
        Core->>Core: hash("教程") = 0xA7
    end

    par 并行加载索引分片
        Core->>Cache: 检查 index_42.pf
        Cache-->>Core: 缓存未命中
        Core->>Server: GET /pagefind/index/index_42.pf
        Server-->>Core: 返回索引数据 (5KB)

        Core->>Cache: 检查 index_a7.pf
        Cache-->>Core: 缓存命中
        Cache-->>Core: 返回缓存数据
    end

    Core->>Core: 解析索引分片
    Core->>Core: 查找匹配文档<br/>"React": [1,5,23]<br/>"教程": [1,8,15]<br/>交集: [1]

    Core->>Core: 计算 TF-IDF 得分
    Core->>Core: 排序结果

    Core->>Cache: 检查 fragment_1.pf
    Cache-->>Core: 缓存未命中
    Core->>Server: GET /pagefind/fragment/zh_1.pf
    Server-->>Core: 返回内容片段 (12KB)

    Core->>Core: 提取摘要<br/>高亮关键词
    Core->>Core: 生成结果对象

    Core-->>UI: 返回搜索结果
    UI->>UI: 渲染结果列表
    UI-->>User: 显示搜索结果

    Note over Core,Server: 总耗时: ~80ms<br/>网络请求: 2 个 (17KB)<br/>缓存命中: 1 个

性能分析:

阶段 耗时 说明
用户输入 + 防抖 300ms 等待用户完成输入
分词 + 哈希计算 <5ms 纯计算,无 I/O
加载索引分片 20-50ms 取决于网络和缓存
索引查询 + 评分 5-10ms 纯内存操作
加载内容片段 15-30ms 取决于网络和缓存
摘要生成 + 渲染 5-10ms DOM 操作
总计(首次) ~80ms 不含防抖延迟
总计(缓存) ~25ms 索引和片段均已缓存

核心技术解析

1. 按需加载机制

Pagefind 最大的创新是渐进式加载。传统的客户端搜索(如 Lunr.js)需要加载完整索引:

// 传统方案:需要加载整个索引
// 假设网站有 1000 个页面,索引文件可能有 5MB
await loadFullIndex(); // 加载 5MB
search("React");

Pagefind 的方案:

// Pagefind:按需加载
search("React");
// 1. 根据 "React" 计算哈希 -> 只加载包含 "React" 的索引分片(可能只有 10KB)
// 2. 找到匹配的文档 ID
// 3. 只加载这些文档的内容片段(可能 20KB)
// 总共只需要下载 30KB,而不是 5MB

实现原理:

查询词 "React"
    ↓
计算哈希:hash("React") = 0x3A7F
    ↓
确定分片:0x3A7F % 256 = 127
    ↓
加载:GET /pagefind/index/index_127.pf
    ↓
解析分片,找到文档 ID: [5, 23, 87]
    ↓
加载内容:GET /pagefind/fragment/en_005.pf

2. 倒排索引结构

倒排索引是搜索引擎的核心数据结构:

正向索引(文档 → 词条):
文档1: ["React", "教程", "入门"]
文档2: ["Vue", "教程", "进阶"]
文档3: ["React", "进阶", "Hooks"]

倒排索引(词条 → 文档):
"React"  → [文档1, 文档3]
"Vue"    → [文档2]
"教程"   → [文档1, 文档2]
"入门"   → [文档1]
"进阶"   → [文档2, 文档3]
"Hooks"  → [文档3]

当搜索 "React 教程" 时:

  1. 查找 "React" → [文档1, 文档3]
  2. 查找 "教程" → [文档1, 文档2]
  3. 取交集 → [文档1]

3. TF-IDF 相关性评分

Pagefind 使用 TF-IDF 算法计算搜索结果的相关性:

TF(词频):词条在文档中出现的频率

TF(t, d) = 词条 t 在文档 d 中出现的次数 / 文档 d 的总词数

IDF(逆文档频率):词条的稀有程度

IDF(t) = log(总文档数 / 包含词条 t 的文档数)

TF-IDF 得分

TF-IDF(t, d) = TF(t, d) × IDF(t)

示例计算:

假设我们有 100 个文档,搜索 "React Hooks":

文档A:
- "React" 出现 10 次,文档总词数 100
  TF("React", A) = 10/100 = 0.1
  包含 "React" 的文档有 30IDF("React") = log(100/30) = 0.52
  TF-IDF("React", A) = 0.1 × 0.52 = 0.052

- "Hooks" 出现 5TF("Hooks", A) = 5/100 = 0.05
  包含 "Hooks" 的文档有 5IDF("Hooks") = log(100/5) = 1.30
  TF-IDF("Hooks", A) = 0.05 × 1.30 = 0.065

文档A 总分 = 0.052 + 0.065 = 0.117

"Hooks" 更稀有,所以权重更高。

4. 多语言分词

Pagefind 内置了多种语言的分词器:

英文分词(基于空格和标点):

"Hello, world!" → ["hello", "world"]

中文分词(基于字典和统计):

"自然语言处理" → ["自然", "语言", "处理"]
或 → ["自然语言", "处理"]
或 → ["自然语言处理"]

Pagefind 使用 n-gram 技术处理 CJK 文本:

"搜索引擎" → ["搜索", "搜索引", "搜索引擎", "索引", "索引擎", "引擎"]

这样即使查询 "搜索" 或 "引擎",也能匹配到 "搜索引擎"。

性能优化技术

Pagefind 通过多种技术实现高性能:

索引压缩(原始 10MB → 500KB,压缩率 95%):

  • 去除 HTML 标签和属性
  • 词干提取(stemming):"running" → "run"
  • 停用词过滤(去除 "the", "a", "is" 等常见词)
  • 增量编码 + Gzip 压缩

并行加载: 支持 HTTP/2 多路复用,多个词条的索引分片并行加载,总耗时 = max(单个加载时间)。

技术内幕深度剖析

1. 核心算法实现

Pagefind 是用 Rust 编写并编译为 WASM,核心逻辑包括:

哈希计算(FNV-1a 算法):

// 词条归一化(转小写、去除特殊字符)→ FNV-1a 哈希 → 映射到 0-255
hash("React") = 0x42 (66)
hash("react") = 0x42 (66)  // 大小写不敏感

索引加载器

  1. 计算词条哈希 → 确定分片编号
  2. 检查内存缓存 → 未命中则加载对应的 .pf 文件
  3. 解析二进制格式 → 存入缓存
  4. 返回词条对应的文档 ID 列表

TF-IDF 评分器

// 计算每个文档的相关性得分
score = Σ(TF × IDF × weight) × lengthNorm
// - TF: 词频
// - IDF: 逆文档频率(缓存优化)
// - weight: 自定义权重
// - lengthNorm: 长度归一化(防止长文档占优)

2. .pf 文件格式

Pagefind 使用自定义的 .pf(Pagefind Format)二进制格式:

索引文件(index_XX.pf)

  • Header:Magic Number (0x5046 'PF') + 版本 + 标志 + 条目数
  • Entries:每个词条 → 文档 ID 列表(增量编码)

示例:"React" → [1, 5, 23] 存储为 [1, +4, +18]

内容片段(fragment_XX.pf)

  • Header:Magic Number + 压缩类型 + 文档 ID + 长度
  • Metadata:JSON 格式(title, url, excerpt 等)
  • Content:原始文本 + 词条位置映射

3. 四层压缩策略

graph LR
    A[原始数据<br/>100KB] --> B[增量编码<br/>50KB]
    B --> C[VarInt 编码<br/>40KB]
    C --> D[词干提取<br/>30KB]
    D --> E[Gzip 压缩<br/>25KB]

    style E fill:#90EE90

Level 1: 增量编码(Delta Encoding)

  • 文档 ID [1, 5, 23, 45][1, +4, +18, +22]
  • 节省 50% 存储空间

Level 2: 变长整数编码(VarInt)

  • 小数字用 1 字节,大数字自动扩展
  • 1 → [0x01]128 → [0x80, 0x01]

Level 3: 词干提取(Stemming)

  • "running", "runs", "runner" → "run"
  • 减少唯一词条数量 30-40%

Level 4: Gzip 压缩

  • 文本压缩率 60-80%
  • 最终实现 95% 总压缩率

4. 三层缓存架构

graph TD
    A[搜索请求] --> B{L1 内存缓存}
    B -->|命中| C[返回结果]
    B -->|未命中| D{L2 HTTP 缓存}
    D -->|命中| C
    D -->|未命中| E{L3 Service Worker}
    E -->|命中| C
    E -->|未命中| F[网络请求]
    F --> G[更新所有缓存]
    G --> C

    style B fill:#FFE4B5
    style D fill:#E0FFFF
    style E fill:#F0E68C
缓存层级 命中延迟 容量 适用场景
L1 内存缓存 <1ms ~10MB 频繁访问的索引(LRU 淘汰)
L2 HTTP 缓存 ~5ms ~100MB 已访问的所有索引(Cache-Control)
L3 Service Worker ~10ms ~50MB 离线访问(可选)
网络请求 50-200ms - 首次访问

性能提升

  • 首次搜索:~80ms
  • 后续搜索(缓存命中):~25ms
  • 离线模式:~25ms

服务器配置(Nginx):

location /pagefind/ {
    add_header Cache-Control "public, max-age=31536000, immutable";
    gzip on;
}

性能对比

方案 初次加载 索引大小 (1000页) 搜索速度 离线支持
Pagefind ~20KB ~500KB <50ms
Algolia 0 (CDN) N/A <10ms
Lunr.js ~30KB ~3MB ~100ms

实际数据(500 页文档网站):

  • 首次搜索:下载 45KB,耗时 ~80ms
  • 后续搜索:下载 10KB,耗时 ~25ms
  • 对比 Lunr.js:减少 97% 的下载量

常见问题

Q: Pagefind 与 Algolia 如何选择?

  • Pagefind:中小型网站(< 10,000 页)、免费、离线支持、重视隐私
  • Algolia:大型网站、高级功能、极致速度、付费

Q: 支持哪些框架? 框架无关,支持 VitePress、Docusaurus、Hugo、Jekyll、Astro、Next.js(SSG)等任何生成 HTML 的工具。

Q: 是否影响 SEO? 不影响。Pagefind 的搜索 UI 是客户端渲染的,原始 HTML 内容完全不受影响。

Q: 如何更新索引? 每次构建时重新生成索引。在 CI/CD 中使用 postbuild 脚本自动化。

总结

Pagefind 为静态网站提供了轻量、高性能的搜索方案:

  • 轻量级:核心 20KB,按需加载
  • 高性能:搜索响应 < 50ms
  • 零配置:开箱即用
  • 完全静态:无需服务器,支持离线
  • 多语言:内置 CJK 分词

核心原理

  1. 倒排索引 + 分片:将索引拆分成 256 个小块
  2. 按需加载:根据查询词哈希值只加载相关分片
  3. TF-IDF 评分:计算相关性智能排序
  4. 多语言分词:支持中英文等智能分词

相关资源

❌