阅读视图

发现新文章,点击刷新页面。

贪心(Python/Java/C++/C/Go/JS/Rust)

为方便计算差值,先把 $\textit{nums}$ 从小到大排序。

把 $\textit{nums}$ 中的元素画在一维数轴上。如果 $\textit{nums}[i]$ 是 $k$ 个数中的最大值,那么最小值的下标至多为 $i-k+1$(要在最小值和最大值之间再选 $k-2$ 个数)。但最小值越小,差值越大,所以最小值的下标恰好为 $i-k+1$ 是最优的。

枚举最大值的下标 $i = k-1,k,k+1,\ldots, n-1$,计算差值 $\textit{nums}[i] - \textit{nums}[i-k+1]$ 的最大值,即为答案。

class Solution:
def minimumDifference(self, nums: List[int], k: int) -> int:
nums.sort()
n = len(nums)
return min(nums[i] - nums[i - k + 1] for i in range(k - 1, n))
class Solution:
    def minimumDifference(self, nums: List[int], k: int) -> int:
        nums.sort()
        return min(mx - mn for mx, mn in zip(nums[k - 1:], nums))
class Solution {
public int minimumDifference(int[] nums, int k) {
Arrays.sort(nums);
int ans = Integer.MAX_VALUE;
for (int i = k - 1; i < nums.length; i++) {
ans = Math.min(ans, nums[i] - nums[i - k + 1]);
}
return ans;
}
}
class Solution {
public:
int minimumDifference(vector<int>& nums, int k) {
ranges::sort(nums);
int ans = INT_MAX;
for (int i = k - 1; i < nums.size(); i++) {
ans = min(ans, nums[i] - nums[i - k + 1]);
}
return ans;
}
};
#define MIN(a, b) ((b) < (a) ? (b) : (a))

int cmp(const void* a, const void* b) {
return *(int*)a - *(int*)b;
}

int minimumDifference(int* nums, int numsSize, int k) {
qsort(nums, numsSize, sizeof(int), cmp);
int ans = INT_MAX;
for (int i = k - 1; i < numsSize; i++) {
ans = MIN(ans, nums[i] - nums[i - k + 1]);
}
return ans;
}
func minimumDifference(nums []int, k int) int {
slices.Sort(nums)
ans := math.MaxInt
for i := k - 1; i < len(nums); i++ {
ans = min(ans, nums[i]-nums[i-k+1])
}
return ans
}
var minimumDifference = function(nums, k) {
nums.sort((a, b) => a - b);
let ans = Infinity;
for (let i = k - 1; i < nums.length; i++) {
ans = Math.min(ans, nums[i] - nums[i - k + 1]);
}
return ans;
};
impl Solution {
pub fn minimum_difference(mut nums: Vec<i32>, k: i32) -> i32 {
nums.sort_unstable();
let k = k as usize;
let mut ans = i32::MAX;
for i in k - 1..nums.len() {
ans = ans.min(nums[i] - nums[i - k + 1]);
}
ans
}
}

复杂度分析

  • 时间复杂度:$\mathcal{O}(n\log n)$,其中 $n$ 是 $\textit{nums}$ 的长度。瓶颈在排序上。
  • 空间复杂度:$\mathcal{O}(1)$。忽略排序的栈开销。

分类题单

如何科学刷题?

  1. 滑动窗口与双指针(定长/不定长/单序列/双序列/三指针/分组循环)
  2. 二分算法(二分答案/最小化最大值/最大化最小值/第K小)
  3. 单调栈(基础/矩形面积/贡献法/最小字典序)
  4. 网格图(DFS/BFS/综合应用)
  5. 位运算(基础/性质/拆位/试填/恒等式/思维)
  6. 图论算法(DFS/BFS/拓扑排序/基环树/最短路/最小生成树/网络流)
  7. 动态规划(入门/背包/划分/状态机/区间/状压/数位/数据结构优化/树形/博弈/概率期望)
  8. 常用数据结构(前缀和/差分/栈/队列/堆/字典树/并查集/树状数组/线段树)
  9. 数学算法(数论/组合/概率期望/博弈/计算几何/随机算法)
  10. 贪心与思维(基本贪心策略/反悔/区间/字典序/数学/思维/脑筋急转弯/构造)
  11. 链表、树与回溯(前后指针/快慢指针/DFS/BFS/直径/LCA)
  12. 字符串(KMP/Z函数/Manacher/字符串哈希/AC自动机/后缀数组/子序列自动机)

我的题解精选(已分类)

欢迎关注 B站@灵茶山艾府

证明,交换论证法(Python/Java/C++/C/Go/JS/Rust)

你可能猜了一个结论:把最小的数和最大的数配对,把第二小的数和第二大的数配对,依此类推。注意题目保证 $n$ 是偶数。

但是,如何证明这样做是对的?

设 $\textit{nums}$ 排序后的结果为 $a_1\le a_2\le \cdots \le a_n$。

首先证明,$a_1$ 与 $a_n$ 配对是最优的。

设 $a_i$ 和 $a_j$ 是数组中的另外两个数,考虑如下两种配对方案:

  • $(a_1,a_i)$ 和 $(a_j,a_n)$。最大数对和为 $M_1 = \max(a_1+a_i,a_j+a_n,其他数对和)$。
  • $(a_1,a_n)$ 和 $(a_i,a_j)$。最大数对和为 $M_2 = \max(a_1+a_n,a_i+a_j,其他数对和)$。

由于 $a_1\le a_j$,$a_i\le a_n$,所以 $a_1+a_i\le a_j+a_n$,所以 $M_1 = \max(a_j+a_n,其他数对和)$。

由于 $a_1+a_n\le a_j+a_n$ 且 $a_i+a_j\le a_j+a_n$,所以 $\max(a_1+a_n,a_i+a_j)\le a_j+a_n$,所以 $M_2\le M_1$。

这意味着,对于任意最优配对方案,将其调整为 $a_1$ 和 $a_n$ 配对,不会让最大数对和变得更大。所以存在最优配对方案,其中 $a_1$ 和 $a_n$ 是配对的。

去掉 $a_1$ 和 $a_n$(已配对),问题变成一个规模更小的子问题($n-2$ 个数),同理可得其他数的配对方式。

class Solution:
    def minPairSum(self, nums: List[int]) -> int:
        nums.sort()
        n = len(nums)
        return max(nums[i] + nums[-1 - i] for i in range(n // 2))
class Solution {
    public int minPairSum(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int ans = 0;
        for (int i = 0; i < n / 2; i++) {
            ans = Math.max(ans, nums[i] + nums[n - 1 - i]);
        }
        return ans;
    }
}
class Solution {
public:
    int minPairSum(vector<int>& nums) {
        ranges::sort(nums);
        int n = nums.size();
        int ans = 0;
        for (int i = 0; i < n / 2; i++) {
            ans = max(ans, nums[i] + nums[n - 1 - i]);
        }
        return ans;
    }
};
#define MAX(a, b) ((b) > (a) ? (b) : (a))

int cmp(const void* a, const void* b) {
    return *(int*)a - *(int*)b;
}

int minPairSum(int* nums, int numsSize) {
    qsort(nums, numsSize, sizeof(int), cmp);
    int ans = 0;
    for (int i = 0; i < numsSize / 2; i++) {
        ans = MAX(ans, nums[i] + nums[numsSize - 1 - i]);
    }
    return ans;
}
func minPairSum(nums []int) (ans int) {
slices.Sort(nums)
n := len(nums)
for i, x := range nums[:n/2] {
ans = max(ans, x+nums[n-1-i])
}
return
}
var minPairSum = function(nums) {
    nums.sort((a, b) => a - b);
    const n = nums.length;
    let ans = 0;
    for (let i = 0; i < n / 2; i++) {
        ans = Math.max(ans, nums[i] + nums[n - 1 - i]);
    }
    return ans;
};
impl Solution {
    pub fn min_pair_sum(mut nums: Vec<i32>) -> i32 {
        nums.sort_unstable();
        let n = nums.len();
        let mut ans = 0;
        for i in 0..n / 2 {
            ans = ans.max(nums[i] + nums[n - 1 - i]);
        }
        ans
    }
}

复杂度分析

  • 时间复杂度:$\mathcal{O}(n\log n)$,其中 $n$ 是 $\textit{nums}$ 的长度。瓶颈在排序上。
  • 空间复杂度:$\mathcal{O}(1)$。忽略排序的栈开销。

专题训练

见下面贪心题单的「§1.2 单序列配对」和「§1.7 交换论证法」。

分类题单

如何科学刷题?

  1. 滑动窗口与双指针(定长/不定长/单序列/双序列/三指针/分组循环)
  2. 二分算法(二分答案/最小化最大值/最大化最小值/第K小)
  3. 单调栈(基础/矩形面积/贡献法/最小字典序)
  4. 网格图(DFS/BFS/综合应用)
  5. 位运算(基础/性质/拆位/试填/恒等式/思维)
  6. 图论算法(DFS/BFS/拓扑排序/基环树/最短路/最小生成树/网络流)
  7. 动态规划(入门/背包/划分/状态机/区间/状压/数位/数据结构优化/树形/博弈/概率期望)
  8. 常用数据结构(前缀和/差分/栈/队列/堆/字典树/并查集/树状数组/线段树)
  9. 数学算法(数论/组合/概率期望/博弈/计算几何/随机算法)
  10. 贪心与思维(基本贪心策略/反悔/区间/字典序/数学/思维/脑筋急转弯/构造)
  11. 链表、树与回溯(前后指针/快慢指针/DFS/BFS/直径/LCA)
  12. 字符串(KMP/Z函数/Manacher/字符串哈希/AC自动机/后缀数组/子序列自动机)

我的题解精选(已分类)

欢迎关注 B站@灵茶山艾府

❌