方法一:按字符分组
思路与算法
我们可以将字符串 $s$ 按照 $0$ 和 $1$ 的连续段分组,存在 $\textit{counts}$ 数组中,例如 $s = 00111011$,可以得到这样的 $\textit{counts}$ 数组:$\textit{counts} = {2, 3, 1, 2}$。
这里 $\textit{counts}$ 数组中两个相邻的数一定代表的是两种不同的字符。假设 $\textit{counts}$ 数组中两个相邻的数字为 $u$ 或者 $v$,它们对应着 $u$ 个 $0$ 和 $v$ 个 $1$,或者 $u$ 个 $1$ 和 $v$ 个 $0$。它们能组成的满足条件的子串数目为 $\min { u, v }$,即一对相邻的数字对答案的贡献。
我们只要遍历所有相邻的数对,求它们的贡献总和,即可得到答案。
不难得到这样的实现:
###C++
class Solution {
public:
int countBinarySubstrings(string s) {
vector<int> counts;
int ptr = 0, n = s.size();
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
++ptr;
++count;
}
counts.push_back(count);
}
int ans = 0;
for (int i = 1; i < counts.size(); ++i) {
ans += min(counts[i], counts[i - 1]);
}
return ans;
}
};
###Java
class Solution {
public int countBinarySubstrings(String s) {
List<Integer> counts = new ArrayList<Integer>();
int ptr = 0, n = s.length();
while (ptr < n) {
char c = s.charAt(ptr);
int count = 0;
while (ptr < n && s.charAt(ptr) == c) {
++ptr;
++count;
}
counts.add(count);
}
int ans = 0;
for (int i = 1; i < counts.size(); ++i) {
ans += Math.min(counts.get(i), counts.get(i - 1));
}
return ans;
}
}
###JavaScript
var countBinarySubstrings = function(s) {
const counts = [];
let ptr = 0, n = s.length;
while (ptr < n) {
const c = s.charAt(ptr);
let count = 0;
while (ptr < n && s.charAt(ptr) === c) {
++ptr;
++count;
}
counts.push(count);
}
let ans = 0;
for (let i = 1; i < counts.length; ++i) {
ans += Math.min(counts[i], counts[i - 1]);
}
return ans;
};
###Go
func countBinarySubstrings(s string) int {
counts := []int{}
ptr, n := 0, len(s)
for ptr < n {
c := s[ptr]
count := 0
for ptr < n && s[ptr] == c {
ptr++
count++
}
counts = append(counts, count)
}
ans := 0
for i := 1; i < len(counts); i++ {
ans += min(counts[i], counts[i-1])
}
return ans
}
###C
int countBinarySubstrings(char* s) {
int n = strlen(s);
int counts[n], counts_len = 0;
memset(counts, 0, sizeof(counts));
int ptr = 0;
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
++ptr;
++count;
}
counts[counts_len++] = count;
}
int ans = 0;
for (int i = 1; i < counts_len; ++i) {
ans += fmin(counts[i], counts[i - 1]);
}
return ans;
}
###Python
class Solution:
def countBinarySubstrings(self, s: str) -> int:
counts = []
ptr, n = 0, len(s)
while ptr < n:
c = s[ptr]
count = 0
while ptr < n and s[ptr] == c:
ptr += 1
count += 1
counts.append(count)
ans = 0
for i in range(1, len(counts)):
ans += min(counts[i], counts[i - 1])
return ans
###C#
public class Solution {
public int CountBinarySubstrings(string s) {
List<int> counts = new List<int>();
int ptr = 0, n = s.Length;
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
ptr++;
count++;
}
counts.Add(count);
}
int ans = 0;
for (int i = 1; i < counts.Count; i++) {
ans += Math.Min(counts[i], counts[i - 1]);
}
return ans;
}
}
###TypeScript
function countBinarySubstrings(s: string): number {
const counts: number[] = [];
let ptr = 0, n = s.length;
while (ptr < n) {
const c = s[ptr];
let count = 0;
while (ptr < n && s[ptr] === c) {
ptr++;
count++;
}
counts.push(count);
}
let ans = 0;
for (let i = 1; i < counts.length; i++) {
ans += Math.min(counts[i], counts[i - 1]);
}
return ans;
}
###Rust
impl Solution {
pub fn count_binary_substrings(s: String) -> i32 {
let mut counts = Vec::new();
let bytes = s.as_bytes();
let n = bytes.len();
let mut ptr = 0;
while ptr < n {
let c = bytes[ptr];
let mut count = 0;
while ptr < n && bytes[ptr] == c {
ptr += 1;
count += 1;
}
counts.push(count);
}
let mut ans = 0;
for i in 1..counts.len() {
ans += counts[i].min(counts[i - 1]);
}
ans
}
}
这个实现的时间复杂度和空间复杂度都是 $O(n)$。
对于某一个位置 $i$,其实我们只关心 $i - 1$ 位置的 $\textit{counts}$ 值是多少,所以可以用一个 $\textit{last}$ 变量来维护当前位置的前一个位置,这样可以省去一个 $\textit{counts}$ 数组的空间。
代码
###C++
class Solution {
public:
int countBinarySubstrings(string s) {
int ptr = 0, n = s.size(), last = 0, ans = 0;
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
++ptr;
++count;
}
ans += min(count, last);
last = count;
}
return ans;
}
};
###Java
class Solution {
public int countBinarySubstrings(String s) {
int ptr = 0, n = s.length(), last = 0, ans = 0;
while (ptr < n) {
char c = s.charAt(ptr);
int count = 0;
while (ptr < n && s.charAt(ptr) == c) {
++ptr;
++count;
}
ans += Math.min(count, last);
last = count;
}
return ans;
}
}
###JavaScript
var countBinarySubstrings = function(s) {
let ptr = 0, n = s.length, last = 0, ans = 0;
while (ptr < n) {
const c = s.charAt(ptr);
let count = 0;
while (ptr < n && s.charAt(ptr) === c) {
++ptr;
++count;
}
ans += Math.min(count, last);
last = count;
}
return ans;
};
###Go
func countBinarySubstrings(s string) int {
var ptr, last, ans int
n := len(s)
for ptr < n {
c := s[ptr]
count := 0
for ptr < n && s[ptr] == c {
ptr++
count++
}
ans += min(count, last)
last = count
}
return ans
}
###C
int countBinarySubstrings(char* s) {
int ptr = 0, n = strlen(s), last = 0, ans = 0;
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
++ptr;
++count;
}
ans += fmin(count, last);
last = count;
}
return ans;
}
###Python
class Solution:
def countBinarySubstrings(self, s: str) -> int:
ptr, n = 0, len(s)
last, ans = 0, 0
while ptr < n:
c = s[ptr]
count = 0
while ptr < n and s[ptr] == c:
ptr += 1
count += 1
ans += min(count, last)
last = count
return ans
###C#
public class Solution {
public int CountBinarySubstrings(string s) {
int ptr = 0, n = s.Length;
int last = 0, ans = 0;
while (ptr < n) {
char c = s[ptr];
int count = 0;
while (ptr < n && s[ptr] == c) {
ptr++;
count++;
}
ans += Math.Min(count, last);
last = count;
}
return ans;
}
}
###TypeScript
function countBinarySubstrings(s: string): number {
let ptr = 0, n = s.length;
let last = 0, ans = 0;
while (ptr < n) {
const c = s[ptr];
let count = 0;
while (ptr < n && s[ptr] === c) {
ptr++;
count++;
}
ans += Math.min(count, last);
last = count;
}
return ans;
}
###Rust
impl Solution {
pub fn count_binary_substrings(s: String) -> i32 {
let bytes = s.as_bytes();
let n = bytes.len();
let mut ptr = 0;
let mut last = 0;
let mut ans = 0;
while ptr < n {
let c = bytes[ptr];
let mut count = 0;
while ptr < n && bytes[ptr] == c {
ptr += 1;
count += 1;
}
ans += count.min(last);
last = count;
}
ans
}
}
复杂度分析
- 时间复杂度:$O(n)$。
- 空间复杂度:$O(1)$。